精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E-AF-C的余弦值。
解:(1)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形
因为E为BC的中点,
所以AE⊥BC
又BC∥AD,因此AE⊥AD
因为PA⊥平面ABCD,AE平面ABCD,
所以PA⊥AE
而PA平面PAD,AD平面PAD且PA∩AD=A,
所以AE⊥平面PAD
又PD平面PAD,
所以AE⊥PD。
(2)设AB=2,H为PD上任意一点,连接AH,EH
由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角
在Rt△EAH中,AE=
所以当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大
此时tan∠EHA=
因此AH=
又AD=2,
所以∠ADH=45°,
所以PA=2
因为PA⊥平面ABCD,PA平面PAC,
所以平面PAC⊥平面ABCD
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,
在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=
又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=

在Rt△ESO中,cos∠ESO=
即所求二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案