精英家教网 > 高中数学 > 题目详情
7.关于函数$f(x)=4sin(2x+\frac{π}{3})(x∈R)$有下列命题,其中正确的是(  )
①y=f(x)的表达式可改写为$y=4cos(2x-\frac{π}{6})$;
②y=f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③y=f(x)是以2π为最小正周期的周期函数;   
④y=f(x)的图象关于直线$x=\frac{5π}{6}$对称.
A.①②B.③④C.②③D.①④

分析 利用正弦函数的图象和性质,逐一判断各个各个选项是否正确,从而得出结论.

解答 解:对于函数$f(x)=4sin(2x+\frac{π}{3})(x∈R)$,由于f(x)=4cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=4cos(2x-$\frac{π}{6}$),故①正确;
当x=-$\frac{π}{6}$时,f(x)=0,故y=f(x)的图象关于点$(-\frac{π}{6},0)$对称,故②正确;
由于f(x)的周期为$\frac{2π}{2}$=π,故③错误;
当x=$\frac{5π}{6}$时,f(x)=0,故y=f(x)的图象不关于直线$x=\frac{5π}{6}$对称,故排除④,
故选:A.

点评 本题主要考查正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)化简:$\frac{{cos(θ+π)×{{sin}^2}(θ+3π)}}{{tan(θ+4π)×tan(π+θ)×{{cos}^3}(-π-θ)}}$
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin(2x+φ)(-π<φ<0).y=f(x)图象的一条对称轴是直线$x=\frac{π}{8}$.
(1)求函数f(x)的解析式;
(2)为了得到$y=2sin(2x-\frac{π}{6})$的图象,由f(x)怎么样变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=loga(2x-3)+$\frac{\sqrt{2}}{2}$的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=(  )
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某同学动手做实验:《用随机模拟的方法估计圆周率的值》,在如图的正方形中随机撒豆子,每个豆子落在正方形内任何一点是等可能的,若他随机地撒500粒统计得到落在圆内的豆子数为390粒,则由此估计出的圆周率π的值为3.12.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列有如下性质:若数列{an}为等差数列,则当${b_n}=\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$时,数列{bn}也是等差数列;类比上述性质,相应地,若数列{cn}是正项等比数列,当dn=____________时,数列{dn}也是等比数列,则dn的表达式为(  )
A.${d_n}=\frac{{{c_1}+{c_2}+…+{c_n}}}{n}$B.${d_n}=\frac{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}{n}$
C.${d_n}=\root{n}{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}$D.${d_n}=\root{n}{{\frac{{{c_1}^n•{c_2}^n{•_{\;}}{…_{\;}}•{c_n}^n}}{n}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2(a+1)x+2alnx
(1)若a=2.求f(x)的极值.
(2)若a>0.求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果由一个2×2列联表中的数据计算得k=4.073,那么有95%的把握认为两变量有关系,已知P(k2≥3.841)≈0.05,P(k2≥5.024)≈0.025.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间中,下列说法不正确的是(  )
A.三点确定一个平面B.梯形定是平面图形
C.平行四边形一定是平面图形D.三角形一定是平面图形

查看答案和解析>>

同步练习册答案