精英家教网 > 高中数学 > 题目详情
15.函数y=loga(2x-3)+$\frac{\sqrt{2}}{2}$的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=(  )
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

分析 由题意求出点P的坐标,代入f(x)求函数解析式,再将9代入即可.

解答 解:由题意,令2x-3=1,则y=$\frac{\sqrt{2}}{2}$,
即点P(2,$\frac{\sqrt{2}}{2}$),
由P在幂函数(x)=xα的图象上可得,2α=$\frac{\sqrt{2}}{2}$
则α=-$\frac{1}{2}$,
则f(x)=${x}^{-\frac{1}{2}}$
则f(9)=$\frac{1}{3}$,
故选A.

点评 本题考查了对数函数与幂函数的性质应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=Asin({ωx+ϕ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,
求(Ⅰ)函数f(x)的解析式;
(Ⅱ)函数y=Acos(ωx+ϕ)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(α)=$\frac{sin(π+α)cos(2π-α)tan(-α+\frac{3π}{2})}{cos(-π-α)}$,则f(-$\frac{31π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的通项公式an=($\frac{10}{11}$)n(3n+13),则使得an取最大值时的n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x3-ax2+6(a∈R).
(1)讨论f(x)的单调性;
(2)当a=9时,求方程$f(x)=\sqrt{2}$的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等差数列{an}中,a1=2,公差d=3则{an}的通项公式为(  )
A..an=3n-1B.an=2n+1C..an=2n+3D..an=3n+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于函数$f(x)=4sin(2x+\frac{π}{3})(x∈R)$有下列命题,其中正确的是(  )
①y=f(x)的表达式可改写为$y=4cos(2x-\frac{π}{6})$;
②y=f(x)的图象关于点$(-\frac{π}{6},0)$对称;
③y=f(x)是以2π为最小正周期的周期函数;   
④y=f(x)的图象关于直线$x=\frac{5π}{6}$对称.
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在一半径等于1千米的圆弧及直线段道路AB围成的区域内计划建一条商业街,其起点和终点均在道路AB上,街道由两条平行于对称轴l且关于l对称的两线段EF、CD,及夹在两线段EF、CD间的弧组成.若商业街在两线段EF、CD上收益为每千米2a元,在两线段EF、CD间的弧上收益为每千米a元.已知$∠AOB=\frac{π}{2}$,设∠EOD=2θ,
(1)将商业街的总收益f(θ)表示为θ的函数;
(2)求商业街的总收益的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2AD=2CD=2,E是PB上的一点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)如图(1),若$\overrightarrow{PE}$=$\frac{1}{3}$$\overrightarrow{PB}$,求证:PD∥平面EAC;
(Ⅲ)如图(2),若E是PB的中点,且二面角P-AC-E的余弦值为$\frac{\sqrt{6}}{3}$,求直线PA与平面EAC所成角的正弦值.
 

查看答案和解析>>

同步练习册答案