精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的通项公式an=($\frac{10}{11}$)n(3n+13),则使得an取最大值时的n=6.

分析 假设an是数列{an}的项取最大值,根据条件建立不等式$\left\{\begin{array}{l}{{a}_{n+1}≤{a}_{n}}\\{{a}_{n-1}≤{a}_{n}}\end{array}\right.$,进行求解即可.

解答 解:假设an是数列{an}的项取最大值,
则($\frac{10}{11}$)n+1(3n+16)≤($\frac{10}{11}$)n(3n+13),
且($\frac{10}{11}$)n-1(3n+10)≤($\frac{10}{11}$)n(3n+13),
即n≥$\frac{17}{3}$且n≤$\frac{20}{3}$,
∵n是整数,
∴n=6,
故答案为:6

点评 本题主要考查数列的函数的性质的应用,根据条件建立不等式$\left\{\begin{array}{l}{{a}_{n+1}≤{a}_{n}}\\{{a}_{n-1}≤{a}_{n}}\end{array}\right.$的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数$y=\frac{x^2}{2^x}$的单调增区间是(  )
A.$(0,\frac{2}{ln2})$B.$(-∞,0),(\frac{2}{ln2},+∞)$C.$(-∞,\frac{2}{ln2})$D.$(\frac{2}{ln2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列命题:①向量$\overrightarrow{AB}$与$\overrightarrow{BA}$是相等向量;②共线的单位向量是相等向量;③模为零的向量与任一向量共线;④两平行向量所在直线互相平行.其中不正确的是(  )
A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合M={y|y=2x},P={x|y=$\sqrt{x-1}$},M∩P=(  )
A.[1,+∞)B.[0,+∞)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin(2x+φ)(-π<φ<0).y=f(x)图象的一条对称轴是直线$x=\frac{π}{8}$.
(1)求函数f(x)的解析式;
(2)为了得到$y=2sin(2x-\frac{π}{6})$的图象,由f(x)怎么样变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xex+5.
(1)求f(x)的单调区间;
(2)求f(x)在[0,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=loga(2x-3)+$\frac{\sqrt{2}}{2}$的图象恒过定点P,P在幂函数f(x)的图象上,则f(9)=(  )
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列有如下性质:若数列{an}为等差数列,则当${b_n}=\frac{{{a_1}+{a_2}+…+{a_n}}}{n}$时,数列{bn}也是等差数列;类比上述性质,相应地,若数列{cn}是正项等比数列,当dn=____________时,数列{dn}也是等比数列,则dn的表达式为(  )
A.${d_n}=\frac{{{c_1}+{c_2}+…+{c_n}}}{n}$B.${d_n}=\frac{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}{n}$
C.${d_n}=\root{n}{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}$D.${d_n}=\root{n}{{\frac{{{c_1}^n•{c_2}^n{•_{\;}}{…_{\;}}•{c_n}^n}}{n}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在长方形OABC内任取一点P,则点P落在阴影部分内的概率为1-$\frac{3}{2e}$

查看答案和解析>>

同步练习册答案