精英家教网 > 高中数学 > 题目详情
有5个同学排队照相,求:
(1)甲、乙2个同学必须相邻的排法有多少种?
(2)甲、乙、丙3个同学互不相邻的排法有多少种?
考点:计数原理的应用
专题:排列组合
分析:(1)相邻问题,采用捆绑法.先排甲、乙,再与其他3名同学排列,问题得以解决.
(2)不相邻问题,采用插空法,先排其余的2名同学,出现3个空,将甲、乙、丙插空,问题得以解决.
解答: 解:(1)这是典型的相邻问题,采用捆绑法.先排甲、乙,有
A
2
2
种方法,再与其他3名同学排列,共有
A
2
2
A
4
4
=48种不同排法.
(2)这是不相邻问题,采用插空法,先排其余的2名同学,有
A
2
2
种排法,出现3个空,将甲、乙、丙插空,所以共有
A
2
2
A
3
3
=12种排法.
点评:本题主要考查了排列中相邻不相邻的问题,相邻用捆绑,不相邻用插空,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
高校相关人数抽取人数
A18x
B362
C54y
(Ⅰ)求x,y;
(Ⅱ)若从高校A、C抽取的人中选2人作专题发言,求这二人是高校A、C各一人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在点(1,f(1))处的切线与直线6x+y+1=0平行.求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形.AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R上的函数f(x)如果满足:对任意x1,x2∈R,都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],则称f(x)为R上的凹函数.已知二次函数f(x)=ax2+x(a∈R且a≠0).
(Ⅰ)求证:a>0时,函数f(x)为凹函数;
(Ⅱ)如果x∈(0,1]时,|f(x)|≤1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2+2x.
(1)写出函数f(x)在x∈R的解析式;
(2)若函数g(x)=f(x)-2ax+2(x∈[1,2]),求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体ABCD的棱长都相等,E、F、G、H分别为AB、AC、AD以及BC的中点,求证:面EHG⊥面FHG.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表:
喜欢数学不喜欢数学合计
男生
 
5
 
女生10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为
3
5

(Ⅰ)请将上面的列联表补充完整(不用写计算过程);
(Ⅱ)是否有99%的把握认为喜欢数学与性别有关?说明你的理由;
下面的临界值表供参考:(参考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
d0.9000.9500.9900.995
k22.7063.8416.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-2x+2,x∈[
1
2
,1]
-2(x-
1
2
)2+1,x∈[0,
1
2
)
,在平面直角坐标中作出y=f(x)的图象,并写出值域.

查看答案和解析>>

同步练习册答案