精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足a1=1,且${a_{n+1}}={a_n}+\frac{1}{n+1}$,n∈N*,则$\sum_{k=1}^{2014}{k({a_{2015}}-{a_k})}$=$\frac{2029105}{2}$.

分析 由递推公式得到an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,从而a2015-ak=$\frac{1}{k+1}+\frac{1}{k+2}+…+\frac{1}{2015}$,由此得到$\sum_{k=1}^{2014}k(2015-{a}_{k})$中,$\frac{1}{2015}$的和为1007,$\frac{1}{2014}$的和为$\frac{2013}{2}$,…,由此能求出$\sum_{k=1}^{2014}{k({a_{2015}}-{a_k})}$的值.

解答 解:∵数列{an}满足a1=1,且${a_{n+1}}={a_n}+\frac{1}{n+1}$,n∈N*
∴${a}_{n+1}-{a}_{n}=\frac{1}{n+1}$,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,
∴a2015-ak=$\frac{1}{k+1}+\frac{1}{k+2}+…+\frac{1}{2015}$,

a2015-a2013=$\frac{1}{2014}+\frac{1}{2015}$,
a2015-a2014=$\frac{1}{2015}$,
由此得到$\sum_{k=1}^{2014}k(2015-{a}_{k})$中,$\frac{1}{2015}$有:1+2+3+…+2014=$\frac{2014(1+2014)}{2}$=2015×1007个,和为2015×$1007×\frac{1}{2015}$=1007,
$\frac{1}{2014}$有:1+2+3+…+2013=$\frac{2013(1+2013)}{2}$=2013×1007个,和为$2013×1007×\frac{1}{2014}=\frac{2013}{2}$,

∴$\sum_{k=1}^{2014}{k({a_{2015}}-{a_k})}$=$\frac{2014}{2}+\frac{2013}{2}+…+\frac{1}{2}$=$\frac{2014×(\frac{2014}{2}+\frac{1}{2})}{2}$=$\frac{2015×1007}{2}$=$\frac{2029105}{2}$.
故答案为:$\frac{2029105}{2}$.

点评 本题考查数列的前n项和的求法,综合性强,难度大,对数学思维的要求较高,解题时要注意累加法和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.分式$\frac{6{x}^{2}+12x+10}{{x}^{2}+2x+2}$可取的最小值为(  )
A.4B.5C.6D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,AB+AC=2BC,G为重心,I为内心.证明:GI∥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y是三角形的两边,α,β是三角形的两内角,且x,y,α,β之间满足下列关系$\left\{\begin{array}{l}{xsinα+ycosβ=0}\\{xcosα-ysinβ=0}\end{array}\right.$,则α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,且4a1,2a2,a3成等比数列.若a1=3,则S4=(  )
A.7B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+(y-3)2=1相切,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的定义域是[-1,2],则y=f(x)+f(-x)的定义域是(  )
A.[-1,1]B.[-2,2]C.[-1,2]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,b2+c2>a2,且角A为三个内角中的最大角,则角A的取值范围是 (  )
A.(120°,180°)B.(90°,120°)C.(60°,90°)D.(45°,60°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆M与圆N:(x-$\frac{5}{3}$)2+(y+$\frac{5}{3}$)2=r2关于直线y=x对称,且点D(-$\frac{1}{3}$,$\frac{5}{3}$)在圆M上
(1)判断圆M与圆N的位置关系
(2)设P为圆M上任意一点,A(-1,$\frac{5}{3}$).B(1,$\frac{5}{3}$),$\overrightarrow{PA}$与$\overrightarrow{PB}$不共线,PG为∠APB的平分线,且交AB于G,求证△PBG与△APG的面积之比为定值.

查看答案和解析>>

同步练习册答案