精英家教网 > 高中数学 > 题目详情

(Ⅰ)已知函数)的最小正周期为.求函数的单调增区间;
(Ⅱ)在中,角对边分别是,且满足.若的面积为.求角的大小和边b的长.

(1);(2)

解析试题分析:(Ⅰ)由正弦的二倍角公式和降幂公式,将的解析式变形为的形式,然后根据的关系,确定的值,再结合的单调区间,最终确定函数的单调增区间;(Ⅱ)由已知不难联想到余弦定理,已知和余弦定理联立,得,然后求出的值,进而确定A,根据面积,得值,再根据余弦定理,得的另一方程,联立求
试题解析:(Ⅰ)由题意得
,由周期为,得. 得,由正弦函数的单调增区间
,得,所以函数的单调增区间是

(Ⅱ)由余弦定理得  ,代入, ∵,∴解得:.
考点:1、正弦函数的单调性;2、正弦的二倍角公式和降幂公式;3、余弦定理和面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角所对的边分别为
(Ⅰ)求的值
(Ⅱ)求三角函数式的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(1)求证:;
(2)若求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知f(x)=sinx+2sin()cos().(1)若f(α)=,α∈(-,0),求α的值;
(2)若sin,x∈(,π),求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)在△中,角所对的边分别为,且.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的顶点在原点,始边与轴的正半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数在区间上的取值范围. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期和单调递增区间;
(2)求函数在区间上的最小值和最大值,并求出取最值时的值。

查看答案和解析>>

同步练习册答案