精英家教网 > 高中数学 > 题目详情

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

(Ⅰ)f(x)的递增区间是[-+kπ,+kπ]( k∈Z);(II)最大值为+1,最小值为0.

解析试题分析:(Ⅰ)将f(x)=a•b=2sin2x+2sinxcosx降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(II)将的图象向左平移个单位,则将换成得到函数的解析式g(x)=sin[2(x+)-]+1=sin(2x+)+1.由≤x≤≤2x+,结合正弦函数的图象可得0≤g(x)≤+1,从而得g(x)的最大值和最小值.
试题解析:(Ⅰ)f(x)=a•b=2sin2x+2sinxcosx
=+sin2x
=sin(2x-)+1,                3分
由-+2kπ≤2x-+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,
∴f(x)的递增区间是[-+kπ,+kπ](k∈Z).            6分
(II)由题意g(x)=sin[2(x+)-]+1=sin(2x+)+1,    9分
≤x≤≤2x+
∴ 0≤g(x)≤+1,即 g(x)的最大值为+1,g(x)的最小值为0.   12分
考点:1、向量及三角恒等变换;2、三角函数的单调区间及范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数. 的部分图象如图所示,其中点是图象的一个最高点.

(1)求函数的解析式;
(2)已知,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin ωx-sin2(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间;
(2)当x时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的周期为.

(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数的不同取值,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期和图像的对称轴方程;
(2)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,钝角(角对边为)的角满足.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面向量,函数
(Ⅰ)求函数的值域和函数的单调递增区间;
(Ⅱ)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)已知函数)的最小正周期为.求函数的单调增区间;
(Ⅱ)在中,角对边分别是,且满足.若的面积为.求角的大小和边b的长.

查看答案和解析>>

同步练习册答案