精英家教网 > 高中数学 > 题目详情

已知函数的周期为.

(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数的不同取值,讨论函数的零点个数.

(1);(2)详见解析;(3)当时,函数无零点;当时,函数仅有一个零点;当时,函数有两个零点;当时,函数有三个零点.

解析试题分析:(1)先由辅助角公式化简,然后由周期为确定,可确定,从而可写出振幅、初相;(2)根据正弦函数的五点作图法进行作图即可;(3)将的零点问题,转化为直线与函数的图像交点的个数问题,结合(2)中作出的函数的图像,对直线的位置进行讨论,可得答案.
试题解析:(1)化为    1分
得,    2分
(1)函数的振幅是,初相为    4分
(2)列表


0














2
0

0

   8分
(3)函数的零点个数,即函数与函数的交点个数,由(2)图像知:
①当时,函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调递增区间;
(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(1)求函数的定义域;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函数的单调递增区间;
(3)当时,求函数的最大值和最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调递减区间;
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

同步练习册答案