精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.

(1),函数的单调递增区间为;(2)因此的最大值为

解析试题分析:(1)将函数的解析式第一、三项结合,利用二倍角的余弦函数公式化简,第二项利用二倍角的正弦函数公式化简,合并后提取,再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,找出的值,代入周期公式,即可求出函数的最小正周期,由正弦函数的递增区间列出关于的不等式,求出不等式的解集即可得到的递增区间;(2)由及确定出的的解析式,变形后利用特殊角的三角函数值求出的度数,可得出的值,再由的值,利用余弦定理列出关系式,将的值代入,利用完全平方公式变形后,再利用基本不等式即可求出的最大值.
试题解析:(1)
,              3分
所以函数的最小正周期为.        4分

所以函数的单调递增区间为.    6分
(2)由可得,又,所以。8分
由余弦定理可得,即,所以,故,当且仅当,即时等号成立
因此的最大值为.           12分
考点:解三角形;三角函数的化简求值;三角函数的周期性及其求法;正弦函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)设αf=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数. 的部分图象如图所示,其中点是图象的一个最高点.

(1)求函数的解析式;
(2)已知,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)化简
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量a=(sin x,sin x),b=(cos x,sin x),x.
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin ωx·cos ωx+2cos2ωx(其中ω>0),且函数f(x)的周期为π.
(1)求ω的值;
(2)将函数yf(x)的图象向右平移个单位长度,再将所得图象各点的横坐标缩小到原来的倍(纵坐标不变)得到函数yg(x)的图象,求函数g(x)在上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin ωx-sin2(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间;
(2)当x时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的周期为.

(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数的不同取值,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若点在角的终边上,求的值;(Ⅱ)若,求的值域.

查看答案和解析>>

同步练习册答案