精英家教网 > 高中数学 > 题目详情

已知
(1)化简
(2)若是第三象限角,且,求的值.

(1) ;(2) .

解析试题分析:(1)根据诱导公式进行化简;(2)首先化简,根据第三象限角,同角基本关系式,确定的值.
试题解析:解:(1)
;.               (6)
(2)
是第三象限角,..           (6)
考点:1.诱导公式;2同角基本关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin(2ωxφ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为,且点是它的一个对称中心.
(1)求f(x)的表达式;
(2)若f(ax)(a>0)在上是单调递减函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调递增区间;
(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期和单调递增区间;
(2)当时,的最大值为2,求的值,并求出的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin+cosxg(x)=2sin2.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Msin(ωxφ)(M>0,ω>0,|φ|<)的部分图象如图所示.
 
(1)求函数f(x)的解析式;
(2)在△ABC中,角ABC的对边分别是abc,若(2ac)cos Bbcos C,求f的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(1)求函数的定义域;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

同步练习册答案