精英家教网 > 高中数学 > 题目详情

设向量a=(sin x,sin x),b=(cos x,sin x),x.
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.

(1)x(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin+cosxg(x)=2sin2.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=Asin +1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)设αf=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及单调递增区间;
(2)在中,A、B、C分别为三边所对的角,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的值;
(2)求的值;
(3)若是第三象限角,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函数的单调递增区间;
(3)当时,求函数的最大值和最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,三个内角所对的边分别为已知.
(1)求
(2)设的值.

查看答案和解析>>

同步练习册答案