精英家教网 > 高中数学 > 题目详情

已知
(1)求的值;
(2)求的值;
(3)若是第三象限角,求的值.

(1);(2);(3).

解析试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以转化为只含的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有,得,再利用同角关系,又因为是第三象限角,所以
试题解析:⑴                      2分
.                            3分
         9分
.                         10分
⑶解法1:由,得
,故,即,         12分
因为是第三象限角,,所以.             14分
解法2:,           12分
因为是第三象限角,,所以.             14分
考点:1.诱导公式;2.同角三角函数的基本关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin+sincos ωx(其中ω>0),且函数f(x)的图象的两条相邻的对称轴间的距离为.
(1)求ω的值;
(2)将函数yf(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量a=(sin x,sin x),b=(cos x,sin x),x.
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A,B,C所对的边分别为a,b,c,已知.
(1)当,且的面积为时,求a的值;
(2)当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin ωx-sin2(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间;
(2)当x时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角所对的边,且
(1)求角的值;
(2)若的面积,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期和图像的对称轴方程;
(2)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)化简:
(2)已知为第二象限角,化简.

查看答案和解析>>

同步练习册答案