精英家教网 > 高中数学 > 题目详情

已知函数,钝角(角对边为)的角满足.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若,求.

(Ⅰ);(Ⅱ).

解析试题分析:利用余弦的两角差公式和余弦的二倍角公式对化简可得,利用函数的单调性可求出的单调递增区间;
(Ⅱ)由代入函数解析式可得又因为,所以,故
根据余弦定理,有,解得,又因为为钝角三角形,所以.
试题解析:(Ⅰ),由
,所以函数的单调递增区间是.
(Ⅱ)由
又因为,所以,故
根据余弦定理,有,解得
又因为为钝角三角形,所以.
考点:1.三角函数化简,2余弦定理解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期和单调递增区间;
(2)当时,的最大值为2,求的值,并求出的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(1)求函数的定义域;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调递减区间;
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=,b=,设函数=ab.
(Ⅰ)求的单调递增区间;
(Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且的最小正周期为.
(Ⅰ)若,求的值;
(Ⅱ)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点在角α的终边上,点在角β的终边上,且
(1)求
(2)求P,Q的坐标并求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知f(x)=sinx+2sin()cos().(1)若f(α)=,α∈(-,0),求α的值;
(2)若sin,x∈(,π),求f(x)的值.

查看答案和解析>>

同步练习册答案