精英家教网 > 高中数学 > 题目详情

已知函数,且的最小正周期为.
(Ⅰ)若,求的值;
(Ⅱ)求函数的单调增区间.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)由已知可得,且由,得,解三角方程并注意,取相应范围的根;(Ⅱ)将变形为,利用复合函数的单调性,只需
,解不等式并表示成区间的形式,即得单调递增区间.
试题解析:(Ⅰ)解:因为的最小正周期为,所以,解得
,得,即,所以.因为
所以.
(Ⅱ)解:函数
,由,解得
所以函数的单调增区间为.
考点:1、三角方程;2、两角和与差的三角函数;3、三角函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BCa,∠ABCθ,设△ABC的面积为S1,正方形的PQRS面积为S2.
 
(1)用aθ表示S1S2
(2)当a固定,θ变化时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)求函数的单调增区间;
(2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期及在区间上的最大值和最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,钝角(角对边为)的角满足.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角的对边,的面积满足.
(Ⅰ)求角A的值;
(Ⅱ)若,设角B的大小为x,用x表示c并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)若,求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期;
(2)当时,求函数的最大值,最小值.

查看答案和解析>>

同步练习册答案