精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)若,求曲线的单调性;

2)若处取得极大值,求实数的取值范围.

【答案】1上为减函数;2

【解析】试题分析:(1)求导得到进行二阶导得到时, ,即,所以上为减函数;(2),得 四类讨论,最后解得答案。

试题解析

1)当时, ,设

,当时,

时, ,所以单调递增,在上为减函数,

,所以当时, ,即,所以上为减函数,

2)由已知得,则

,则

①若,则当时, ,故函数上单调递增,

且当时, ,即;当时,

,又,所以处取得极小值不满足题意.

②若,当时, ,故函数在上单调递增,

且当时, ,即;当时,

,又,所以处取极小值不满足题意.

③若,则当,故上单调递增;

时, ,故上单调递减,所以当时,

,故上点掉递减,不满足题意.

④若,则,当时, ,故上单调递减,

且当时, ,即;当时,

,又,所以处取得极大值,满足题意,

综上,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数

(1)处取得极值时,若关于x的方程 上恰有两个不相等的实数根,求实数b的取值范围.

(2)若对任意的,总存在,使不等式 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=x2﹣2ax+5.
(1)若a>1,且函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若不等式x|f(x)﹣x2|≤1对x∈[ ]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积为S= bccosA.
(1)求角A的大小;
(2)若c=8,点D在AC边上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若数列{an}满足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan , Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈[0,1],则函数 的值域是(
A.
B.
C.[ ]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】偶函数f(x)满足f(x﹣1)=f(x+1),且在x∈[0,1]时,f(x)=x2 , g(x)=ln|x|,则函数h(x)=f(x)﹣g(x)的零点的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,当0≤x1<x2≤2时, <0,则方程f(x)﹣lg|x|=0的根的个数为(
A.12
B.10
C.6
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于 两点.

Ⅰ)求椭圆的标准方程.

Ⅱ)若直线轴上的截距是,求实数的取值范围.

Ⅲ)以为底作等腰三角形,顶点为,求的面积.

查看答案和解析>>

同步练习册答案