精英家教网 > 高中数学 > 题目详情
求f(x)=6cos2x+6sinxcosx-4cos(x+
π
4
)•cos(
π
4
-x)的值域.
考点:三角函数中的恒等变换应用
专题:三角函数的求值,三角函数的图像与性质
分析:化简可得f(x)=sin(2x+φ)+3,其中tanφ=
1
3
,从而可求f(x)=6cos2x+6sinxcosx-4cos(x+
π
4
)•cos(
π
4
-x)的值域.
解答: 解:∵f(x)=6cos2x+6sinxcosx-4cos(x+
π
4
)•cos(
π
4
-x)
=3(1+cos2x)+3sin2x-2cos2x
=3sin2x+cos2x+3
=
10
sin(2x+φ)+3,其中tanφ=
1
3

∵-
10
≤sin(2x+φ)≤
10

∴f(x)=6cos2x+6sinxcosx-4cos(x+
π
4
)•cos(
π
4
-x)的值域为[3-
10
,3+
10
].
点评:本题主要考察了三角函数中的恒等变换应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C1,C2的焦点分别在x,y轴上,且中心为坐标原点.双曲线C1的实轴长和虚轴长分别等于双曲线C2的虚轴长和实轴长,且双曲线C1过点A(
5
3
),双曲线C2过点B(
10
7
),求双曲线C1,C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P:m2-10m+16≤0,Q:函数f(x)=x3+mx2+(m+6)x+1存在极大值和极小值,求使“P∩?Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+bx+4,(b∈R)与x轴有交点,若对一切非零实数x,都有f(x+
1
x
)≥0.
(1)求实数b的取值集合;
(2)若b=-4,设函数g(x)=f(x)+
a
f(x)
,x∈[3,2+
2
],求h(a)=g(x)max-g(x)min的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S={1,2,3,…,21},A⊆S且A中有三个元素,若A中的元素可构成等差数列,则这样的集合A共有(  )
A、99个B、100个
C、199个D、210个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在x0点的某个邻域内有定义,则f(x)在x0处连续的充分必要条件是(  )
A、
lim
x-x0
f(x)存在
B、
lim
x→x0-
f(x)=
lim
x→x0+
f(x)
C、
lim
x-x0
f(x)=0
D、在x0的某个邻域内,f(x)=f(x0)+α(x),其中
lim
x-x0
α(x)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,DE=1.EC=
7
,∠ADC=
3
∠BEC=
π
3
,求
(1)CD;
(2)求cos∠AEB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(2ωx+φ)(其中A>0,ω>0,0<φ<
π
2
)的周期为π,其图象上一个最高点为M(
π
6
,2).
(Ⅰ)求f(x)的解析式,并求其单调减区间;
(Ⅱ)当x∈[0,
π
4
]时,求f(x)的最值及相应的x的取值,并求出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题A的逆命题为B,命题A的否命题为C,则B是C的(  )
A、逆命题B、否命题
C、逆否命题D、都不对

查看答案和解析>>

同步练习册答案