精英家教网 > 高中数学 > 题目详情

已知非零向量a,b,c满足,向量a,b的夹角为120°,且|b|=2|a|求向量a与 c的夹角。

解析试题分析:把代入利用两个向量的数量积的定义进行运算,求得结果为0,故得到

即向量a与 c的夹角为
考点:向量的数量积的定义,两个向量垂直的条件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知单位向量e1,e2的夹角为60°,则=________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在中,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是同一平面内的三个向量,其中
(1)若,且,求的坐标;
(2)若,且垂直,求的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且与夹角为,求
(1)
(2)的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率为,以椭圆
左顶点为圆心作圆,设圆与椭圆交于点与点.
(1)求椭圆的方程;
(2)求的最小值,并求此时圆的方程;
(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是两个单位向量,其夹角为60°,且
(1)求
(2)分别求的模;
(3)求的夹角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知M(1+cos 2x,1),N(1,sin2x+a)(x∈R,a∈R,a是常数),且y=·(O为坐标原点).
(1)求y关于x的函数关系式y=f(x).
(2)若x∈[0,]时,f(x)的最大值为2013,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,-<θ<
(Ⅰ)若,求θ;
(Ⅱ)求的最大值.

查看答案和解析>>

同步练习册答案