精英家教网 > 高中数学 > 题目详情

【题目】四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1)见解析;(2)

【解析】分析:(1),交于点,连,可得,然后根据线面平行的判定定理可得平面(2)由题意得两两垂直,建立空间直角坐标系,求出平面与平面的法向量后,可得两法向量夹角的余弦值,由此可得所求锐二面角的余弦值.

详解:(1) 连,交于点,连

∵底面为平行四边形,

的中点.

又在中,的中点,

平面

(2)以的中点为原点,分别以轴,建立如图所示的坐标系.

设平面的一个法向量为

,得

,则

同理设平面的一个法向量为

,得

,则

∴平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ x2 , g(x)= x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值;
(Ⅲ)若m=﹣1,且正实数x1 , x2满足F(x1)=﹣F(x2),求证:x1+x2 ﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB的面积为y,yx之间的函数关系式用如图所示的程序框图给出.

(1)写出程序框图中①,,③处应填充的式子.

(2)若输出的面积y值为6,则路程x的值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·牡丹江一中]某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )

A. 73.3,75,72 B. 73.3,80,73

C. 70,70,76 D. 70,75,75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了140位市民进行调查,调查结果统计如下:

支持

不支持

总计

男性市民

60

女性市民

50

合计

70

140

(I)根据已知数据,把表格数据填写完整;

(II)利用(1)完成的表格数据回答下列问题:

(ⅰ)能否在犯错误的概率不超过0.001的前提下认为性别与支持申办足球世界杯有关;

(ⅱ)已知在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取3人,求至多有1位老师的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ ,g(x)=ax+b.
(1)若函数h(x)=f(x)﹣g(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若直线g(x)=ax+b是函数f(x)=lnx﹣ 图象的切线,求a+b的最小值;
(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1 , y1),B(x2 , y2),求证:x1x2>2e2 . (取e为2.8,取ln2为0.7,取 为1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=x3ax2bx+1的导数满足,其中常数abR.

(1)求曲线yfx)在点(1,f(1))处的切线方程;

(2)设,求函数gx)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“三角保型函数”,给出下列函数: ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函数”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

同步练习册答案