精英家教网 > 高中数学 > 题目详情

(本题满分14分)已知为定义在上的奇函数,当时,
(1)求上的解析式;
(2)试判断函数在区间上的单调性,并给出证明.

(1)(2)函数在区间上为单调减函数,证明见解析

解析试题分析:(1)当时,
所以
                                  ……6分
(2)函数在区间上为单调减函数.
证明:设是区间上的任意两个实数,且

因为,
所以 即.
所以函数在区间上为单调减函数.                                  ……14分
考点:本小题主要考查利用奇偶性求分段函数的解析式以及利用定义判定函数的单调性,考查了学生的转化能力和推理能力.
点评:此题第一问求解析式时,不要忘记,证明函数的单调性,只能用单调性的定义或导数(选修中将会学到).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数 
(1)设处取得极值,且,求的值,并说明是极大值点还是极小值点;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 求a的值;
(2) 证明的奇偶性;
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数是偶函数,求的解析式;(3分)
(2)在(1)的条件下,求函数上的最大、最小值;(3分)
(3)要使函数上是单调函数,求的范围。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 若,求函数的极值;
(2) 设函数,求函数的单调区间;
(3) 若在区间)上存在一点,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设是定义在上的单调增函数,满足,

求(1)
(2)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知:
(1)用定义法证明函数上的增函数;
(2)是否存在实数使函数为奇函数?若存在,请求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是偶函数,且时,
(1)求当>0时的解析式;   (2) 设,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,且
(1)求函数的解析式;
(2)用单调性的定义证明上是增函数;
(3)解不等式

查看答案和解析>>

同步练习册答案