精英家教网 > 高中数学 > 题目详情

【题目】某企业为了了解职工的工作状况,随机抽取了一个车间对职工工作时间的情况进行暗访,工作时间在小时及以上的为合格.把所得数据进行整理后,分成组画出频率分布直方图(如图所示),但由于工作疏忽,没有画出最后一组,只知道最后一组的频数是.

(Ⅰ)求这次暗访中工作时间不合格的人数;

(Ⅱ)已知在工作时间超过小时的人中有两名女职工,现要从工作时间在小时以上的人中选出两名代表在职工代表大会上发言,求至少选出一位女职工作代表的概率.

【答案】(Ⅰ)14;(Ⅱ) .

【解析】试题分析:(Ⅰ)根据各矩形面积和为可得第组的频率为,从而总人数为,进而可得工作时间不合格的人数为;(Ⅱ)工作时间超过小时得共有人,利用列举法列举出人选出两人的情况共有种,其中至少选出一位女职工作代表的有种,根据古典概型概率公式可得结果.

试题解析:(Ⅰ) 组的频率为

本车间总人数为.

工作时间不合格的人数为

(Ⅱ)由已知,工作时间超过小时得共有人,分别记为: ,其中 为男职工, 为女职工.

从中任选人有: 种情况,

其中至少有一名女职工得情况有: 种,

所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1 边的中点,现把沿折叠,使其与构成如图2所示的三棱锥.

1)求证:平面平面

2)求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届四川省成都市第七中学高三上学期模拟】已知椭圆的一个焦点,且过点,右顶点为,经过点的动直线与椭圆交于两点.

1)求椭圆的方程;

2是椭圆上一点, 的角平分线交轴于,求的长;

3)在轴上是否存在一点,使得点关于轴的对称点落在上?若存在,求出的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.

(1)求椭圆C的方程;

(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数),满足,且时恒成立.

1)求的值;

2)若,解不等式

3)是否存在实数,使函数在区间上有最小值?若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 为实数,且,记由所有组成的数集为.

1)已知,求

2)对任意的恒成立,求的取值范围;

3)若,判断数集中是否存在最大的项?若存在,求出最大项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案