精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\left\{{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a^{x-6}},x>7}\end{array}}\right.$,数列{an}满足:an=f(n)(n∈N*),且对于任意的正整数m,n,都有$\frac{{{a_m}-{a_n}}}{m-n}>0$,则实数a的取值范围是(2,3).

分析 由题意得到数列{an}是递增数列,即可得到1<a<3且f(7)<f(8),解得即可.

解答 解:∵数列{an}满足:an=f(n)(n∈N*),且对于任意的正整数m,n,都有$\frac{{{a_m}-{a_n}}}{m-n}>0$,
∴数列{an}是递增数列,
∴1<a<3且f(7)<f(8),
∴7(3-a)-3<a2,解得a<-9或a>2,
故实数a的取值范围是(2,3).
故答案为(2,3)

点评 本题考查了数列的函数特征和分段函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x2-x<0},B={x|log2x≤0},则A∪B=(  )
A.(0,1)B.(-∞,1]C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.三棱锥P-ABC的四个顶点都在半径为5的球面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对2000名学生进行身体健康检查,用分层抽样的办法抽取容量为200的样本,已知样本中女生比男生少6人,则该校共有男生(  )
A.1030人B.970人C.97人D.103人

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=ex(-x2+x+1),且对?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,则b的最小值为(  )
A.e-1B.eC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:
休闲方式
性别
逛街上网合计
105060
101020
合计206080
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体的体积为$\underline{\frac{8}{3}}$;表面积为6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.国家规定个人稿费纳税办法如下:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿费的11%纳税,设扣税前应得稿费为x元,应纳税额为y元.
(1)求y关于x的函数解析式;
(2)已知某作家出版一本书,共纳税420元,求他的稿费是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,复数z=(m-1)(m-2)+(m-2)i,m∈R,若z是纯虚数,则m=(  )
A.1B.2C.1或2D.1或-2

查看答案和解析>>

同步练习册答案