精英家教网 > 高中数学 > 题目详情
4.设f(x)=ex(-x2+x+1),且对?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,则b的最小值为(  )
A.e-1B.eC.1D.2

分析 由题意:对?$θ∈[0\;,\;\;\frac{π}{2}]$,令m=cosθ,在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递减.∴f(m)在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递减.令n=sinθ在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递增.f(n)在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递增.
当θ=0时,m取得最大值为1,n取值最小值为0,所以y=[f(cosθ)-f(sinθ)]是减函数,即可y的最大时θ=0,求解出b的最小值.

解答 解:由题意:f(x)=ex(-x2+x+1),
对?$θ∈[0\;,\;\;\frac{π}{2}]$,
令m=cosθ,在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递减.
∴f(m)在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递减.
令n=sinθ在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递增.
f(n)在$θ∈[0\;,\;\;\frac{π}{2}]$是单调递增.
当θ=0时,m取得最大值为1,
n取值最小值为0,
那么|f(cosθ)-f(sinθ)|=|f(1)-f(0)|=|e-1|
要使|f(cosθ)-f(sinθ)|≤b恒成立,
只需|e-1|≤b,
解得:b≥e-1,
所以b的最小值e-1.
故选A.

点评 本题本题主要考查了函数恒成立问题的求解,利用复合函数的性质及单调性的应用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某水果商场对新产苹果的总体状况做了一个评估,主要从色泽,重量,有无班痕,含糖量等几个方面评分,满10分为优质苹果,评分7分以下的苹果为普通苹果,评分4分以下为劣质苹果,不予收购.大部分苹果的评分在7~10分之间,该商场技术员对某苹果供应商的苹果随机抽取了16个苹果进行评分,以下表格记录了16个苹果的评分情况:
分数段[0,7)[7,8)[8,9)[9,10]
个数1384
(Ⅰ)现从16个苹果中随机抽取3个,求至少有1个评分不低于9分的概率;
(Ⅱ)以这16个苹果所得的样本数据来估计本年度的总体数据,若从本年度新苹果中任意选3个记X表示抽到评分不低于9分的苹果个数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆交于A,B两点.
(Ⅰ)若sinα=$\frac{3}{5}$,点B的横坐标为$\frac{5}{13}$,求cos(α+β)的值;
(Ⅱ)已知点C$(-2,2\sqrt{3})$,求函数f(α)=$\overrightarrow{OA}$•$\overrightarrow{OC}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2-2x+alnx有两个极值点x1,x2,且x1<x2,则(  )
A.$f({x_1})<\frac{3+2ln2}{4}$B.$f({x_1})<-\frac{1+2ln2}{4}$C.$f({x_1})>\frac{1+2ln2}{4}$D.$f({x_1})>-\frac{3+2ln2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>1},U=R.
(1)求A∪B,(∁UA)∩B;
(2)求A∩C,B∪C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{{\begin{array}{l}{(3-a)x-3,x≤7}\\{{a^{x-6}},x>7}\end{array}}\right.$,数列{an}满足:an=f(n)(n∈N*),且对于任意的正整数m,n,都有$\frac{{{a_m}-{a_n}}}{m-n}>0$,则实数a的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆x2+(m+3)y2=m(m>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及椭圆的长轴和短轴的长、焦点的坐标、顶点的坐标、准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α为第二象限角,且$cosα=-\frac{3}{5}$,则tanα的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$⊥(${\overrightarrow a$+2$\overrightarrow b}$),|$\overrightarrow a$|=2,|$\overrightarrow b$|=2,则向量$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案