20£®°ÂÔË»áÆ¹ÅÒÇò±ÈÈü¹²ÉèÄÐ×Óµ¥´ò¡¢Å®×Óµ¥´ò¡¢ÄÐ×ÓÍÅÌ塢Ů×ÓÍÅÌå¹²ËÄö½ðÅÆ£¬±£ÊعÀ¼ÆÖйúƹÅÒÇòÄжӵ¥´ò»òÍÅÌå»ñµÃһö½ðÅÆµÄ¸ÅÂʾùΪ$\frac{3}{4}$£¬ÖйúƹÅÒÇòÅ®¶Óµ¥´ò»òÍÅÌå»ñµÃһö½ðÅÆµÄ¸ÅÂʾùΪ$\frac{4}{5}$£®
£¨1£©Ç󰴴˹À¼ÆÖйúƹÅÒÇòÅ®¶Ó±ÈÖйúƹÅÒÇòÄжӶà»ñµÃһö½ðÅÆµÄ¸ÅÂÊ£»
£¨2£©¼ÇÖйúƹÅÒÇò¶Ó»ñµÃµÄ½ðÅÆÊýΪ¦Î£¬°´´Ë¹À¼Æ¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®

·ÖÎö £¨1£©ÉèÖйúƹÅÒÇòÄжӻñ0ö½ðÅÆ£¬Å®¶Ó»ñ1ö½ðÅÆÎªÊ¼þA£¬ÖйúƹÅÒÇòÄжӻñ1ö½ðÅÆ£¬Å®¶Ó»ñ2ö½ðÅÆÎªÊ¼þB£¬°´´Ë¹À¼ÆÖйúƹÅÒÇòÅ®¶Ó±ÈÖйúƹÅÒÇòÄжӶà»ñµÃһö½ðÅÆµÄ¸ÅÂÊP£¨A+B£©=P£¨A£©+P£¨B£©£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©¸ù¾ÝÌâÒâÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýÊÇÒ»Ëæ»ú±äÁ¿¦Î£¬ËüµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ¸ÅÂÊ·Ö²¼ÁкÍËù»ñ½ðÅÆµÄÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©ÉèÖйúƹÅÒÇòÄжӻñ0ö½ðÅÆ£¬Å®¶Ó»ñ1ö½ðÅÆÎªÊ¼þA£¬
ÖйúƹÅÒÇòÄжӻñ1ö½ðÅÆ£¬Å®¶Ó»ñ2ö½ðÅÆÎªÊ¼þB£¬
ÔòP£¨A+B£©=P£¨A£©+P£¨B£©
=$C_2^1{£¨{1-\frac{3}{4}}£©^2}•£¨{\frac{4}{5}}£©•£¨{1-\frac{4}{5}}£©$$+C_2^1£¨{\frac{3}{4}}£©•£¨{1-\frac{3}{4}}£©{£¨{\frac{4}{5}}£©^2}=\frac{13}{50}$£®
£¨2£©¸ù¾ÝÌâÒâÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýÊÇÒ»Ëæ»ú±äÁ¿¦Î£¬
ËüµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬4£¨µ¥Î»£ºÃ¶£©£¬
ÄÇô$P£¨{¦Î=0}£©=C_2^1{£¨{1-\frac{3}{4}}£©^2}$${£¨{1-\frac{4}{5}}£©^2}=\frac{1}{400}$£¬
$P£¨{¦Î=1}£©=C_2^1£¨{1-\frac{3}{4}}£©•$$£¨{\frac{3}{4}}£©•{£¨{1-\frac{4}{5}}£©^2}+C_2^1£¨{\frac{4}{5}}£©•$${£¨{1-\frac{3}{4}}£©^2}£¨{1-\frac{4}{5}}£©=\frac{7}{200}$£¬
$P£¨{¦Î=2}£©=C_2^1C_2^1£¨{1-\frac{3}{4}}£©•$$£¨{\frac{3}{4}}£©•£¨{1-\frac{4}{5}}£©£¨{\frac{4}{5}}£©+$${£¨{\frac{4}{5}}£©^2}•{£¨{1-\frac{3}{4}}£©^2}{£¨{1-\frac{4}{5}}£©^2}$$£¨{\frac{3}{4}}£©=\frac{73}{400}$£¬
$P£¨{¦Î=3}£©=C_2^1£¨{1-\frac{3}{4}}£©•£¨{\frac{3}{4}}£©$$•{£¨{\frac{4}{5}}£©^2}+C_2^1{£¨{\frac{3}{4}}£©^2}•£¨{\frac{4}{5}}£©$$£¨{1-\frac{4}{5}}£©=\frac{21}{50}$£¬
$P£¨{¦Î=4}£©={£¨{\frac{3}{4}}£©^2}•$${£¨{\frac{4}{5}}£©^2}=\frac{9}{25}$£¬
Ôò¦ÎµÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º

¦Î01234
P$\frac{1}{400}$$\frac{7}{200}$$\frac{73}{400}$$\frac{21}{50}$$\frac{9}{25}$
ÄÇô£¬Ëù»ñ½ðÅÆµÄÊýѧÆÚÍû$E¦Î=0¡Á\frac{1}{400}+1¡Á\frac{7}{200}$$+2¡Á\frac{73}{400}+3¡Á\frac{21}{50}$$+4¡Á\frac{9}{25}=\frac{31}{10}$£¨Ã¶£©
¹ÊÖйúƹÅÒÇò¶Ó»ñµÃ½ðÅÆÊýµÄÆÚÍûΪ$\frac{31}{10}$ö£®

µãÆÀ ±¾Ì⿼²é¿¼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓ뷽˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Ê¡¸ß¶þÀíÉϵÚÒ»´ÎÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼÊÇ2015Äêij´óѧ×ÔÖ÷ÕÐÉúÃæÊÔ»·½ÚÖУ¬ÆßλÆÀίΪij¿¼Éú´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í¼£¬È¥µôÒ»¸ö×î¸ß·ÖºÍÒ»¸ö×îµÍ·Öºó£¬ËùÊ£Êý¾ÝµÄƽ¾ùÊýºÍÖÚÊýÒÀ´ÎΪ£¨ £©

A£®85£¬84 B£®84£¬85

C£®86£¬84 D£®84£¬86

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}x+\frac{2}{e}£¬x£¼0\\ \frac{x}{e^x}£¬x¡Ý0\end{array}$£¬Èôf£¨x1£©=f£¨x2£©=f£¨x3£©£¨x1£¼x2£¼x3£©£¬Ôò$\frac{{f£¨{x_2}£©}}{x_1}$µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬0£©B£®£¨-2£¬-1£©C£®£¨-¡Þ£¬0£©D£®£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=aex+£¨2-e£©x£¨aΪʵÊý£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬ÇúÏßy=f£¨x£©ÔÚx=0´¦µÄÇÐÏßÓëÖ±Ïߣ¨3-e£©x-y+10=0ƽÐУ®
£¨1£©ÇóʵÊýaµÄÖµ£¬²¢ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä[0£¬+¡Þ£©ÄÚµÄÁãµã¸öÊý£»
£¨2£©Ö¤Ã÷£ºµ±x£¾0ʱ£¬f£¨x£©-1£¾xln£¨x+1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=a+$\sqrt{x}$lnxÔÚ£¨0£¬+¡Þ£©ÉÏÓÐÇÒ½öÓÐ1¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0]B£®£¨-¡Þ£¬0]¡È{$\frac{2}{e}$}C£®£¨-¡Þ£¬$\frac{2}{e}$£©D£®£¨-¡Þ£¬$\frac{2}{e}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑ֪ij³ÌÐò¿òͼÈçͼËùʾ£¬ÔòÖ´ÐиóÌÐòºóÊä³öµÄ½á¹ûÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¸´ÊýzµÄ¹²éÊýΪ$\overline z=1+3i$£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´Êý$\frac{z}{1+i}$ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®É輯ºÏ$A=\left\{{£¨{x£¬y}£©|{{£¨{x-3}£©}^2}+{{£¨{y-4}£©}^2}=\frac{4}{5}}\right\}£¬B=\left\{{£¨{x£¬y}£©|{{£¨{x-3}£©}^2}+{{£¨{y-4}£©}^2}=\frac{36}{5}}\right\}$£¬C={£¨x£¬y£©|2|x-3|+|y-4|=¦Ë}£¬Èô£¨A¡ÈB£©¡ÉC¡Ùϕ£¬ÔòʵÊý¦ËµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[{\frac{{2\sqrt{5}}}{5}£¬2}]¡È[{\frac{{6\sqrt{5}}}{5}£¬6}]$B£®$[{\frac{{2\sqrt{5}}}{5}£¬6}]$C£®$[{\frac{{2\sqrt{5}}}{5}£¬2}]¡È[{4£¬6}]$D£®$\left\{2\right\}¡È[{\frac{{6\sqrt{5}}}{5}£¬6}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{2}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos¦È-\sqrt{2}¦Ñsin¦È+3=0$£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉèPΪÇúÏßCÉÏÒ»µã£¬QΪֱÏßlÉÏÒ»µã£¬Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸