精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是AB,BC,B1C1的中点,则下列说法正确的是     (写出所有正确命题的编号).
①P在直线EF上运动时,GP始终与平面AA1C1C平行;
②点Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;
③点M是平面A1B1C1D1上到点!?和.距离相等的点,则点M的轨迹是一条直线;
④以正方体ABCD-A1B1C1D1的任意两个顶点为端点连一条线段,其中与棱AA1异面的有10条;
⑤点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点E的距离的平方差为3,则点P的轨迹为拋物线.
【答案】分析:画出正方体图形,
①P在直线EF上运动时,可证面GEF∥平面AA1C1C,GP?面GEF,可得结论;
②Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;三角形AD1Q面积不变,C到平面距离不变,体积为定值;
③M是正方体的面A1B1C1D1内到点D和 C1距离相等的点,则M点的轨迹是一条线段,线段A1D1满足题意;
④可列举出所求与棱AA1异面的直线,故可判断;
⑤点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点E的距离的平方差为3,从而可得点P到直线AD的距离的平方=点P到直线A1D1的距离平方减去4.
解答:解:①P在直线EF上运动时,EF∥AC,GF∥C1C,可知面GEF∥平面AA1C1C,GP?面GEF,所以①成立;
②Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;如图(2)三角形AD1Q面积不变,C到平面距离不变,体积为定值,故②正确;
③M是正方体的面A1B1C1D1内到点D和 C1距离相等的点,则M点的轨迹是一条线段,线段A1D1满足题意,故正确.
④以正方体ABCD-A1B1C1D1的任意两个顶点为端点连一条线段,其中与棱AA1异面的有BC、BC1、B1C、B1C1、C1D1、B1D1、CD、CD1、C1D、BD1、B1D、BD共12条,故不正确;
⑤点P是平面ABCD内的动点,且点P到直线A1D1的距离与点P到点E的距离的平方差为3,
则点P到点E的距离的平方,等于点P到直线A1D1的距离的平方减去3
点P到直线AD的距离的平方=点P到直线A1D1的距离平方减去4.
所以,点P到点E的距离的平方=点P到直线AD的距离的平方加上1,点P的轨迹是以E为焦点的抛物线的一部分,故正确.
故答案为:①②③⑤.
点评:本题考查棱锥的结构特征,轨迹方程,考查空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案