精英家教网 > 高中数学 > 题目详情
已知
a
=(1,1),
b
=(1,-1),将向量
c
=(2,3)表示成x
a
+y
b
的形式.
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:
c
=x
a
+y
b
,利用向量坐标的线性运算和共面向量基本定理即可得出.
解答: 解:设
c
=x
a
+y
b

则(2,3)=x(1,1)+y(1,-1)=(x+y,x-y),
x+y=2
x-y=3
,解得
x=
5
2
y=-
1
2

c
=
5
2
a
-
1
2
b
点评:本题考查了向量坐标的线性运算和共面向量基本定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于的方程x2-(m-1)x+2-m=0的两根为正实数,则(  )
A、m≤-1-2
2
或m≥-1+2
2
B、1<m<2
C、m≥2
2
-1
D、-1+2
2
≤m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间中不共面的四个点A、B、C、D,每2个点之间均可连一条线段.
(Ⅰ)任意取出三条线段中.求A、B、C、D四个点均在这三条线段的端点中的概率.
(Ⅱ)任意取出三条线段中,设含有点A的线段的条数为随机变量X,求X的分布列及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,其右焦点为F(1,0),长轴长为4.
(1)求椭圆C的方程;
(2)斜率为1的直线l经过点F,交椭圆C于M,N两点,P为椭圆位于第四象限上一点,且OP⊥MN,求四边形OMPN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x-1,求函数的最大值和最小正周期T,并求当x取何值时达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD是正方形,若PA⊥平面ABCD,且PA=BC=2.求:
(1)求二面角A-CD-P的大小;
(2)VP-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区交通执法部门从某日上午9时开始对经过当地的200辆超速车辆的速度进行测量并分组,并根据测得的数据制作了频率分布表如下,若以频率作为事件发生的概率.
组号超速分组频数频率
频率
组距
1[0.20%)1760.88z
2[20%,40%)120.060.30
3[40%,60%)6y0.15
4[60%,80%)40.020.10
5[805,100%]x0.010.05
(Ⅰ)求x,y,z的值,并估计该地区的超速车辆中超速不低于20%的频率;
(Ⅱ)若在第3,4,5组用分层抽样的方法随机抽取6名司机做回访调查,并在这6名司机中任意选2人进行采访,求这2人中恰有1人超速在[80%,100%]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
分组频数频率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合计
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)为曲线C上任一点,点F2(1,0),直线l:x=4,点P到直线l的距离为d,且满足
d
|PF2|
=2.
(1)求曲线C的轨迹方程,并且说明其轨迹是何图形;
(2)点F1(-1,0),点M为直线l上的一个动点,且直线MF1与曲线C交于两点A1,A2,直线MF2与曲线C交于两点B1,B2,求|A1A2|+|B1B2|的取值范围.

查看答案和解析>>

同步练习册答案