精英家教网 > 高中数学 > 题目详情
14.将一颗骰子向上抛掷两次,所得点数分别为m和n,则n≤2m的概率是$\frac{5}{6}$.

分析 基本事件总数n=6×6=36,n≤2m的对立事件是n>2m,利用列举法求出n>2m包含的基本事件的个数,由此能出n≤2m的概率.

解答 解:将一颗骰子向上抛掷两次,所得点数分别为m和n,
基本事件总数n=6×6=36,
n≤2m的对立事件是n>2m,
n>2m包含的基本事件有:(3,1),(4,1),(5,1),(5,2),(6,1),(6,2),共有6个,
∴n≤2m的概率是:p=1-$\frac{6}{36}=\frac{5}{6}$.
故答案为:$\frac{5}{6}$.

点评 本题考查概率等基础知识,考查推理论证能力、运算求解能力,考查集合思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知圆x2+y2=4,直线l:y=x+b,若圆x2+y2=4上恰有4个点到直线l的距离都等于1,则b的取值范围为(  )
A.(-1,1)B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(1)求证:AE∥平面PCD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|(x+2)(x-3)≤0,x∈Z},B={x|(|x|-2)2=1},则A∩B=(  )
A.{-1,1}B.{1,3}C.{-1,1,3}D.{-3,-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,直线y=1与椭圆C的两交点间距离为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,设R(x0,y0)是椭圆C上的一动点,由原点O向圆(x-x02+(y-y02=4引两条切线,分别交椭圆C于点P,Q,若直线OP,OQ的斜率均存在,并分别记为k1,k2,求证:k1•k2为定值.
(Ⅲ)在(Ⅱ)的条件下,试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西省高一上学期第一次月考数学试卷(解析版) 题型:解答题

已知函数在R上是单调增函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西省高一上学期第一次月考数学试卷(解析版) 题型:填空题

已知集合,若,则实数的a值是____________.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:解答题

为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段,…,后画出如图的部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.tan$\frac{π}{5}$+tan$\frac{2π}{5}$+tan$\frac{3π}{5}$+tan$\frac{4π}{5}$=0.

查看答案和解析>>

同步练习册答案