精英家教网 > 高中数学 > 题目详情
6.如图,D是直角三角形△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(1)若∠DAC=$\frac{π}{6}$,求角B的大小;
(2)若BD=2DC,且AD=2$\sqrt{3}$,求DC的长.

分析 (1)根据正弦定理即可求出,
(2)根据余弦地理和同角的三角函数的关系即可求出.

解答 解:(1)在△ABC中,根据正弦定理,有$\frac{AC}{sin∠ADC}=\frac{DC}{sin∠DAC}$.
∵$AC=\sqrt{3}DC$,
∴$sin∠ADC=\sqrt{3}sin∠DAC=\frac{{\sqrt{3}}}{2}$.
又$∠ADC=∠B+∠BAD=∠B+\frac{π}{3}>\frac{π}{3}$,
∴$∠ADC=\frac{2π}{3}$,
∴$∠C=π-\frac{2π}{3}-\frac{π}{6}=\frac{π}{6}$,
∴$∠B=\frac{π}{3}$;
(2)设DC=x,则$BD=2x,BC=3x,AC=\sqrt{3}x$,
∴$sinB=\frac{AC}{BC}=\frac{{\sqrt{3}}}{3},cosB=\frac{{\sqrt{6}}}{3},AB=\sqrt{6}x$.
在△ABD中,AD2=AB2+BD2-2AB•BD•cosB,
即${(2\sqrt{3})^2}=6{x^2}+4{x^2}-2×\sqrt{6}x×2x×\frac{{\sqrt{6}}}{3}=2{x^2}$,
得$x=\sqrt{6}$.故$DC=\sqrt{6}$.

点评 本题考查了正弦定理余弦定理的应用,以及解三角形的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知各项为正的数列{an}满足${a_1}=\frac{1}{2}$,$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$,n∈N*
(Ⅰ)证明:0<an<an+1<1(n∈N*);
(Ⅱ)求证:${a_1}+{a_2}+…+{a_n}>n-\frac{9}{4}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知关于x的二次方程ax2+bx+c=0(a>0,b,c∈R)在区间(0,2)内有两个实根,若$\left\{\begin{array}{l}{c≥1}\\{25a+10b+4c≥4}\end{array}\right.$,则实数a的最小值为(  )
A.1B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.户外运动已经成为一种时尚运动.某公司为了了解员工喜欢户外运动是否与性别有关,决定从公司全体650人中随机抽取50人进行问卷调查.
喜欢户外运动不喜欢户外运动合计
男员工5
女员工10
合计50
(Ⅰ)通过对挑选的50人进行调查,得到如下2×2列联表:
已知从这50人中进行随机挑选1人,此人喜欢户外运动的概率是0.6.请将2×2列联表补充完整,并估计该公司男、女员工各多少人;
(Ⅱ)估计有多大的把握认为喜欢户外运动与性别有关,并说明你的理由;
(Ⅲ)若用随机数表法从650人中抽取员工.先将650人按000,001,…,649编号.恰好000~199号都为男员工,450~649号都为女员工.现规定从随机数表(见附表)第2行第7列的数开始往右读,在最先挑出的5人中,任取2人,求至少取到1位男员工的概率.
附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
随机数表:
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线ln:y=x-$\sqrt{2n}$与圆Cn:x2+y2=2an+n交于不同的两点An,Bn,n∈N*.数列{an}满足:a1=1,an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=$\frac{n}{{4{a_n}}}$,求数列{bn}的前n项和Tn
(Ⅲ)记数列{an}的前n项和为Sn,在(Ⅱ)的条件下,求证:对任意正整数n,$\sum_{k=1}^{n}$$\frac{k+2}{{S}_{k}({T}_{k}+k+1)}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“∵四边形ABCD是菱形,∴四边形ABCD的对角线互相垂直”,则这个推理的大前提是
菱形的对角线互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sinx($\sqrt{3}$cosx+sinx)-2.
(1)若点P($\sqrt{3}$,-1)在角α的终边上,求f(α)的值;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,且Sn+$\frac{1}{3}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=[2log${\;}_{\frac{1}{4}}$($\frac{1}{3}$an)-7]cosnπ+an,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则an>0的最大n=6,满足SkSk+1<0的正整数k=12.

查看答案和解析>>

同步练习册答案