精英家教网 > 高中数学 > 题目详情
15.设数列{an}的前n项和为Sn,且Sn+$\frac{1}{3}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=[2log${\;}_{\frac{1}{4}}$($\frac{1}{3}$an)-7]cosnπ+an,求数列{bn}前n项和Tn

分析 (1)由已知推导出a1=$\frac{3}{4}$,an=$\frac{1}{4}$an-1,由此能求出数列{an}的通项公式.
(2)先求出bn=(2n-7)cosnπ+3($\frac{1}{4}$)n,由此根据n为偶数和n为奇数两种情况分类讨论,能求出数列{bn}前n项和Tn

解答 解:(1)∵数列{an}的前n项和为Sn,且Sn+$\frac{1}{3}$an=1(n∈N*),
∴当n=1时,a1=S1,由S1+$\frac{1}{3}$a1=$\frac{4}{3}{a}_{1}$=1,解得a1=$\frac{3}{4}$,
当n≥2时,Sn+$\frac{1}{3}$an=1,①,Sn-1+$\frac{1}{3}$an-1=1,②,
①-②,得an+$\frac{1}{3}$an-$\frac{1}{3}$an-1=0,即an=$\frac{1}{4}$an-1
∴{an}是以$\frac{3}{4}$为首项,$\frac{1}{4}$为公比的等比数列.
∴an=$\frac{3}{4}$($\frac{1}{4}$)n-1=3($\frac{1}{4}$)n.(n∈N*).
(2)bn=[2log${\;}_{\frac{1}{4}}$($\frac{1}{3}$an)-7]cosnπ+an
=[$2lo{g}_{\frac{1}{4}}(\frac{1}{4})^{n}$-7]cosnπ+3($\frac{1}{4}$)n
=(2n-7)cosnπ+3($\frac{1}{4}$)n
∴数列{bn}前n项和:
Tn=(7-2)+(4-7)+(7-8)+(16-7)+…+(2n-7)×(-1)n+3($\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+\frac{1}{{4}^{4}}+…+\frac{1}{{4}^{n}}$),
∴当n为偶数时,
Tn=2+8+32+128+…+2×${4}^{\frac{n}{2}-1}$+3($\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+\frac{1}{{4}^{4}}+…+\frac{1}{{4}^{n}}$)
=$\frac{2(1-{4}^{\frac{n}{2}})}{1-4}$+3×$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$
=$\frac{{2}^{n+1}}{3}$+$\frac{1}{3}$-$\frac{1}{{4}^{n}}$.
当n为奇数时,
Tn=2+8+32+128+…+2×${4}^{\frac{n-1}{2}}$+7-2n+3($\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+\frac{1}{{4}^{4}}+…+\frac{1}{{4}^{n}}$)
=$\frac{2(1-{4}^{\frac{n-1}{2}})}{1-4}$+3×$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$+7-2n
=$\frac{{2}^{n}}{3}-\frac{1}{{4}^{n}}-2n+\frac{22}{3}$.
∴${b}_{n}=\left\{\begin{array}{l}{\frac{{2}^{n+1}}{3}+\frac{1}{3}-\frac{1}{{4}^{n}},n为偶数}\\{\frac{{2}^{n}}{3}-\frac{1}{{4}^{n}}-2n+\frac{22}{3}.n为奇数}\end{array}\right.$.

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意构造法和分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow{b}$=(cosx,cosx+sinx).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的解析式;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,D是直角三角形△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(1)若∠DAC=$\frac{π}{6}$,求角B的大小;
(2)若BD=2DC,且AD=2$\sqrt{3}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于区间[a,b]上的函数f(x),若存在x0∈[a,b],使得f(x0)=${∫}_{a}^{b}$f(x)dx成立,则称x0为函数f(x)在区间[a,b]上的一个“积分点”,则函数f(x)=cos(2x+$\frac{π}{6}$)在区间[0,$\frac{π}{2}$]上的“积分点”为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在($\sqrt{x}$-$\frac{2}{x}$)n的展开式中,前3项的系数之和为127.
(1)求n的值;
(2)求x-3项的系数;
(3)求展开式中的所有整式项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知不等式组$\left\{\begin{array}{l}3x+4y-10≥0\\ x≤4\\ y≤3\end{array}\right.$,表示区域D,过区域D中任意一点P作圆x2+y2=1的两条切线且切点分别为A,B,当∠PAB最大时,cos∠PAB=(  )
A.$\frac{4}{5}$B.$\frac{1}{2}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x24568
y3040605070
回归方程为$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline y$-b$\overline x$.
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程$\hat y$=bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一次测验共有4个选择题和2个填空题,每答对一个选择题得20分,每答对一个填空题得10分,答错或不答得0分,若某同学答对每个选择题的概率均为$\frac{2}{3}$,答对每个填空题的概率均为$\frac{1}{2}$,且每个题答对与否互不影响.
(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列对应:
①x→$\frac{2}{x}$,x≠0,x∈R;
②x→y,这里y2=x,x∈N,y∈R;
③A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,(x,y)→x+y
能成为函数的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案