精英家教网 > 高中数学 > 题目详情
16.已知各项为正的数列{an}满足${a_1}=\frac{1}{2}$,$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$,n∈N*
(Ⅰ)证明:0<an<an+1<1(n∈N*);
(Ⅱ)求证:${a_1}+{a_2}+…+{a_n}>n-\frac{9}{4}$(n∈N*).

分析 (Ⅰ)由$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$,得${{a}_{n+1}}^{2}-1=\frac{1}{3}({{a}_{n}}^{2}+2{a}_{n}-3)=\frac{1}{3}({a}_{n}-1)$(an+3),从而$\frac{1-{a}_{n+1}}{1-{a}_{n}}=\frac{1}{3}•\frac{{a}_{n}+3}{{a}_{n+1}+1}$>0,进而an+1<1,由${a}_{1}=\frac{1}{2}<1$,得0<an<1,(n∈N*),由此证明0<an<an+1<1(n∈N*).
(Ⅱ)由$\frac{1-{a}_{n+1}}{1-{a}_{n}}$=$\frac{1}{3}•\frac{{a}_{n}+3}{{a}_{n+1}+1}$<$\frac{7}{9}$,得1-an=(1-a1)×$\frac{1-{a}_{2}}{1-{a}_{1}}$×$\frac{1-{a}_{3}}{1-{a}_{2}}$×…×$\frac{1-{a}_{n}}{1-{a}_{n-1}}$$<\frac{1}{2}•(\frac{7}{9})^{n-1}$,由此能证明${a_1}+{a_2}+…+{a_n}>n-\frac{9}{4}$(n∈N*).

解答 证明:(Ⅰ)由$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$,
得${{a}_{n+1}}^{2}-1=\frac{1}{3}({{a}_{n}}^{2}+2{a}_{n}-3)=\frac{1}{3}({a}_{n}-1)$(an+3),
即$({a}_{n+1}-1)({a}_{n+1}+1)=\frac{1}{3}({a}_{n}-1)({a}_{n}+3)$,
得$\frac{1-{a}_{n+1}}{1-{a}_{n}}=\frac{1}{3}•\frac{{a}_{n}+3}{{a}_{n+1}+1}$>0,
∴$1-{a}_{n+1}=(1-{a}_{1})×\frac{1-{a}_{2}}{1-{a}_{1}}×\frac{1-{a}_{3}}{1-{a}_{2}}×…×$$\frac{1-{a}_{n+1}}{1-{a}_{n}}$
=$\frac{1}{2}×\frac{1}{{3}^{n}}×\frac{{a}_{1}+3}{{a}_{2}+1}×\frac{{a}_{2}+3}{{a}_{3}+1}×…×\frac{{a}_{n}+3}{{a}_{n+1}+1}$>0,
∴an+1<1,
又${a}_{1}=\frac{1}{2}<1$,∴0<an<1,(n∈N*),
∴${{a}_{n+1}}^{2}-{{a}_{n}}^{2}$=$\frac{2}{3}{a}_{n}$(1-an)>0,
∴an+1>an
综上,得:0<an<an+1<1(n∈N*).
(Ⅱ)由(Ⅰ)知:
$\frac{1-{a}_{n+1}}{1-{a}_{n}}$=$\frac{1}{3}•\frac{{a}_{n}+3}{{a}_{n+1}+1}$<$\frac{1}{3}•\frac{{a}_{n}+3}{{a}_{n}+1}$=$\frac{1}{3}$(1+$\frac{2}{{a}_{n}+1}$)≤$\frac{1}{3}(1+\frac{2}{{a}_{1}+1})$=$\frac{7}{9}$,
则n≥2时,1-an=(1-a1)×$\frac{1-{a}_{2}}{1-{a}_{1}}$×$\frac{1-{a}_{3}}{1-{a}_{2}}$×…×$\frac{1-{a}_{n}}{1-{a}_{n-1}}$$<\frac{1}{2}•(\frac{7}{9})^{n-1}$,
∴(1-a1)+(1-a2)+(1-a3)+…+(1-an)<$\frac{1}{2}+\frac{1}{2}•(\frac{7}{9})+\frac{1}{2}(\frac{7}{9})^{2}+…+\frac{1}{2}•(\frac{7}{9})^{n-1}$,
即n-(a1+a2+a3+…+an)<$\frac{1}{2}•\frac{1-(\frac{7}{9})^{n}}{1-\frac{7}{9}}$=$\frac{9}{4}$[1-($\frac{7}{9}$)n]$<\frac{9}{4}$,
∴${a_1}+{a_2}+…+{a_n}>n-\frac{9}{4}$(n∈N*).

点评 本题考查数列与不等式的综合题,是中档题,解题时要认真审题,注意放缩法、不等式性质、数列知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知a>0,b>0,且$\frac{1}{a}+\frac{1}{b}=1$.
(Ⅰ)求a+4b 的最小值;
(Ⅱ)求证:$\frac{b^2}{a}+\frac{a^2}{b}≥\frac{4ab}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$sinα-cosα=\sqrt{2}$,α∈(0,π),则sin2α=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,是某多面体的三视图,则该多面体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{16}{3}$D.$\frac{8\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-mx+m.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若对任意的正整数n,总存在正整数m,使得数列{an}的前n项和Sn=am,则称{an}是“回归数列”.
(Ⅰ)①前n项和为${S_n}={2^n}$的数列{an}是否是“回归数列”?并请说明理由;
②通项公式为bn=2n的数列{bn}是否是“回归数列”?并请说明理由;
(Ⅱ)设{an}是等差数列,首项a1=1,公差d<0,若{an}是“回归数列”,求d的值;
(Ⅲ)是否对任意的等差数列{an},总存在两个“回归数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立,请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1≤2x≤8},B={x|log2(x2-x)>1},则A∩B=(  )
A.(2,3]B.[2,3]C.(-∞,0)∪(0,2]D.(-∞,-1)∪[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow{b}$=(cosx,cosx+sinx).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的解析式;
(2)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,D是直角三角形△ABC斜边BC上一点,AC=$\sqrt{3}$DC.
(1)若∠DAC=$\frac{π}{6}$,求角B的大小;
(2)若BD=2DC,且AD=2$\sqrt{3}$,求DC的长.

查看答案和解析>>

同步练习册答案