1£®Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬×Ü´æÔÚÕýÕûÊým£¬Ê¹µÃÊýÁÐ{an}µÄǰnÏîºÍSn=am£¬Ôò³Æ{an}ÊÇ¡°»Ø¹éÊýÁС±£®
£¨¢ñ£©¢ÙǰnÏîºÍΪ${S_n}={2^n}$µÄÊýÁÐ{an}ÊÇ·ñÊÇ¡°»Ø¹éÊýÁС±£¿²¢Çë˵Ã÷ÀíÓÉ£»
¢ÚͨÏʽΪbn=2nµÄÊýÁÐ{bn}ÊÇ·ñÊÇ¡°»Ø¹éÊýÁС±£¿²¢Çë˵Ã÷ÀíÓÉ£»
£¨¢ò£©Éè{an}ÊǵȲîÊýÁУ¬Ê×Ïîa1=1£¬¹«²îd£¼0£¬Èô{an}ÊÇ¡°»Ø¹éÊýÁС±£¬ÇódµÄÖµ£»
£¨¢ó£©ÊÇ·ñ¶ÔÈÎÒâµÄµÈ²îÊýÁÐ{an}£¬×Ü´æÔÚÁ½¸ö¡°»Ø¹éÊýÁС±{bn}ºÍ{cn}£¬Ê¹µÃan=bn+cn£¨n¡ÊN*£©³ÉÁ¢£¬Çë¸ø³öÄãµÄ½áÂÛ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓá°µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬µ±n=1ʱ£¬a1=S1¡±¼´¿ÉµÃµ½an£¬ÔÙÀûÓ᰻عéÊýÁС±µÄÒâÒå¼´¿ÉµÃ³ö£¬¢Úbn=2n£¬Sn=n2+n=n£¨n+1£©£¬n£¨n+1£©ÎªÅ¼Êý£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{bn}ÊÇ¡°»Ø¹éÊýÁС±£»
£¨2£©ÀûÓõȲîÊýÁеÄǰnÏîºÍ¼´¿ÉµÃ³öSn£¬¶Ô?n¡ÊN*£¬?m¡ÊN*ʹSn=am£¬È¡n=2ºÍ¸ù¾Ýd£¼0¼´¿ÉµÃ³ö£»
£¨3£©Éè{an}µÄ¹«²îΪd£¬¹¹ÔìÊýÁУºbn=a1-£¨n-1£©a1=£¨2-n£©a1£¬cn=£¨n-1£©£¨a1+d£©£¬¿ÉÖ¤Ã÷{bn}ºÍ{cn}ÊǵȲîÊýÁУ®ÔÙÀûÓõȲîÊýÁеÄǰnÏîºÍ¹«Ê½¼°ÆäͨÏʽ¡¢¡°»Ø¹éÊýÁС±£»¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©¢Ùµ±n¡Ý2ʱ£¬an=Sn-Sn-1=2n-2n-1=2n-1£¬
µ±n=1ʱ£¬a1=S1=2£®
µ±n¡Ý2ʱ£¬Sn=an+1£®
¡àÊýÁÐ{an}ÊÇ¡°»Ø¹éÊýÁС±£»
¢Úbn=2n£¬Ç°nÏîºÍSn£¬Sn=n2+n=n£¨n+1£©£¬
¡ßn£¨n+1£©ÎªÅ¼Êý£¬
¡à´æÔÚ2m=n£¨n+1£©£¬¼´m=$\frac{n£¨n+1£©}{2}$£¬
ÊýÁÐ{bn}ÊÇ·ñÊÇ¡°»Ø¹éÊýÁС±£»
£¨2£©Sn=na1+$\frac{n£¨n-1£©}{2}$d=n+$\frac{n£¨n-1£©}{2}$d£¬
¶Ô?n¡ÊN*£¬?m¡ÊN*ʹSn=am£¬¼´n+$\frac{n£¨n-1£©}{2}$d=1+£¨m-1£©d£¬
È¡n=2ʱ£¬µÃ1+d=£¨m-1£©d£¬½âµÃm=2+$\frac{1}{d}$£¬
¡ßd£¼0£¬¡àm£¼2£¬
ÓÖm¡ÊN*£¬¡àm=1£¬¡àd=-1£®
£¨3£©Éè{an}µÄ¹«²îΪd£¬Áîbn=a1-£¨n-1£©a1=£¨2-n£©a1£¬
¶Ô?n¡ÊN*£¬bn+1-bn=-a1£¬
cn=£¨n-1£©£¨a1+d£©£¬
¶Ô?n¡ÊN*£¬cn+1-cn=a1+d£¬
Ôòbn+cn=a1+£¨n-1£©d=an£¬ÇÒÊýÁÐ{bn}ºÍ{cn}ÊǵȲîÊýÁУ®
ÊýÁÐ{bn}µÄǰnÏîºÍTn=na1+$\frac{n£¨n-1£©}{2}$£¨-a1£©£¬
ÁîTn=£¨2-m£©a1£¬Ôòm=$\frac{n£¨n-3£©}{2}$+2£®
µ±n=1ʱ£¬m=1£»µ±n=2ʱ£¬m=1£®
µ±n¡Ý3ʱ£¬ÓÉÓÚnÓën-3µÄÆæÅ¼ÐÔ²»Í¬£¬¼´n£¨n-3£©Îª·Ç¸ºÅ¼Êý£¬m¡ÊN*£®
Òò´Ë¶Ô?n¡ÊN*£¬¶¼¿ÉÕÒµ½m¡ÊN*£¬Ê¹Tn=bm³ÉÁ¢£¬¼´{bn}Ϊ¡°»Ø¹éÊýÁС±£»£®
ÊýÁÐ{cn}µÄǰnÏîºÍRn=$\frac{n£¨n-1£©}{2}$£¨a1+d£©£¬
Áîcm=£¨m-1£©£¨a1+d£©=Rn£¬Ôòm=$\frac{n£¨n-1£©}{2}$+1£®
¡ß¶Ô?n¡ÊN*£¬n£¨n-3£©Îª·Ç¸ºÅ¼Êý£¬¡àm¡ÊN*£®
Òò´Ë¶Ô?n¡ÊN*£¬¶¼¿ÉÕÒµ½m¡ÊN*£¬Ê¹Rn=cm³ÉÁ¢£¬¼´{cn}Ϊ¡°»Ø¹éÊýÁС±£»£®
Òò´ËÃüÌâµÃÖ¤£®

µãÆÀ ±¾Ì⿼²éÁËÀûÓá°µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬µ±n=1ʱ£¬a1=S1¡±Çóan¡¢µÈ²îÊýÁеÄǰnÏîºÍ¹«Ê½¼°ÆäͨÏʽ¡¢¡°»Ø¹éÊýÁС±ÒâÒåµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦¡¢¹¹Ôì·¨£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁи÷×麯Êý±íʾÏàͬº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=$\sqrt{{x}^{2}}$£¬g£¨x£©=£¨$\sqrt{x}$£©2B£®f£¨x£©=1£¬g£¨x£©=x0
C£®f£¨x£©=$\left\{\begin{array}{l}{x£¬x¡Ý0}\\{-x£¬x£¼0}\end{array}\right.$£¬g£¨x£©=$\sqrt{{x}^{2}}$D£®f£¨x£©=x+1£¬g£¨x£©=$\frac{{x}^{2}-1}{x-1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡°a¡Ü0¡±ÊÇ¡°º¯Êý f £¨x£©=2x+aÓÐÁãµã¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}ÖУ¬SnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬¶ÔÈÎÒân¡ÊN*£¬ÓÐ$2{S_n}=a_n^2+{a_n}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}ÊÇÊ×ÏîºÍ¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an•bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¸÷ÏîΪÕýµÄÊýÁÐ{an}Âú×ã${a_1}=\frac{1}{2}$£¬$a_{n+1}^2=\frac{1}{3}a_n^2+\frac{2}{3}{a_n}$£¬n¡ÊN*£®
£¨¢ñ£©Ö¤Ã÷£º0£¼an£¼an+1£¼1£¨n¡ÊN*£©£»
£¨¢ò£©ÇóÖ¤£º${a_1}+{a_2}+¡­+{a_n}£¾n-\frac{9}{4}$£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÏÂÁк¯ÊýµÄµ¼Êý
£¨1£©y=2x3-3x2-4£»
£¨2£©y=xlnx£»
£¨3£©$y=\frac{cosx}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬É趯Բ¹ýµãF2ÇÒÓëÖ±Ïßx=-1ÏàÇУ¬¼Ç¶¯Ô²µÄÔ²ÐĵĹ켣ΪE£®
£¨1£©Çó¹ì¼£EµÄ·½³Ì£»
£¨2£©Ôڹ켣EÉÏÓÐÁ½µãM¡¢N£¬ÍÖÔ²CÉÏÓÐÁ½µãP¡¢Q£¬Âú×ã$\overrightarrow{M{F}_{2}}$•$\overrightarrow{P{F}_{2}}$=0£¬ÇÒ$\overrightarrow{M{F}_{2}}$¡Î$\overrightarrow{N{F}_{2}}$£¬$\overrightarrow{P{F}_{2}}$¡Î$\overrightarrow{Q{F}_{2}}$£¬ÇóËıßÐÎPMQNÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª½Ç¦ÈµÄÖձ߹ýµãP£¨1£¬-2£©£¬Ôòsin¦È=-$\frac{2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¡°¡ßËıßÐÎABCDÊÇÁâÐΣ¬¡àËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±¡±£¬ÔòÕâ¸öÍÆÀíµÄ´óǰÌáÊÇ
ÁâÐεĶԽÇÏß»¥Ïà´¹Ö±£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸