精英家教网 > 高中数学 > 题目详情
12.“a≤0”是“函数 f (x)=2x+a有零点”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据函数零点的性质结合充分条件和必要条件的定义进行判断.

解答 解:若函数 f (x)=2x+a有零点,则f (x)=2x+a=0有解,
即a=-2x有解,
∵-2x<0,
∴a<0,
则“a≤0”是“函数 f (x)=2x+a有零点”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,结合函数零点的条件以及指数函数的性质求出a的取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知程序框图如图所示,其功能是求一个数列{an}的前10项和,则数列{an}的一个通项公式an=$\frac{1}{2n}$,数列{an•an+1}的前2016项和为$\frac{504}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{2}$asinA=($\sqrt{2}$b-c)sinB+($\sqrt{2}$c-b)sinC.
(1)求角A的大小;
(2)若a=$\sqrt{10}$,cosB=$\frac{{2\sqrt{5}}}{5}$,D为AC的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若等边△ABC的边长为1,则△ABC的平面直观图△A′B′C′的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{8}$D.$\frac{\sqrt{6}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$sinα-cosα=\sqrt{2}$,α∈(0,π),则sin2α=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+5}\\{y=3t-1}\end{array}\right.$(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,圆N的方程为ρ2-6ρsinθ=-8.
(1)求圆N的直角坐标方程;
(2)判断直线l与圆N的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,是某多面体的三视图,则该多面体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{16}{3}$D.$\frac{8\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若对任意的正整数n,总存在正整数m,使得数列{an}的前n项和Sn=am,则称{an}是“回归数列”.
(Ⅰ)①前n项和为${S_n}={2^n}$的数列{an}是否是“回归数列”?并请说明理由;
②通项公式为bn=2n的数列{bn}是否是“回归数列”?并请说明理由;
(Ⅱ)设{an}是等差数列,首项a1=1,公差d<0,若{an}是“回归数列”,求d的值;
(Ⅲ)是否对任意的等差数列{an},总存在两个“回归数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立,请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为ρ2=$\frac{12}{3+si{n}^{2}θ}$,F1是圆锥曲线C的左焦点.直线l:$\left\{\begin{array}{l}x=-1+t\\ y=\sqrt{3}t\end{array}\right.$(t为参数).
(Ⅰ)求圆锥曲线C的直角坐标方程和直线l的直角坐标方程;
(Ⅱ)若直线l与圆锥曲线C交于M,N两点,求|F1M|+|F1N|.

查看答案和解析>>

同步练习册答案