2£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²×¶ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3+si{n}^{2}¦È}$£¬F1ÊÇÔ²×¶ÇúÏßCµÄ×󽹵㣮ֱÏßl£º$\left\{\begin{array}{l}x=-1+t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÔ²×¶ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÔ²×¶ÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó|F1M|+|F1N|£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±êÒÔ¼°²ÎÊý·½³ÌµÄ¶¨Òå¼´¿ÉÇó³ö£»
£¨¢ò£©ÏÈ»¯Îª²ÎÊý·½³Ì£¬ÔÙ¸ù¾ÝΤ´ï¶¨Àí¼´¿ÉÇó³ö|F1M|+|F1N|£®

½â´ð ½â£º£¨¢ñ£©¡ß¦Ñsin¦È=y£¬¦Ñ2=$\frac{12}{3+si{n}^{2}¦È}$£¬
¡à¦Ñ2sin2¦È+3¦Ñ2=12£¬
¡ày2+3x2+3y2=12£¬
¡à$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1
¡àÔ²×¶ÇúÏßcµÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
ÓÉÖ±Ïßl£º$\left\{\begin{array}{l}x=-1+t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûtµÃ$\sqrt{3}x-y+\sqrt{3}=0$£¬
ËùÒÔÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì$\sqrt{3}x-y+\sqrt{3}=0$£¬
£¨¢ò£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-1+\frac{1}{2}m}\\{y=\frac{\sqrt{3}}{2}m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬´úÈëÍÖÔ²·½³ÌµÃ£º5m2-4m-12=0£¬
ËùÒÔ£¬m1+m2=$\frac{4}{5}$£¬m1•m2=-$\frac{12}{5}$£¬
ËùÒÔ£¬|F1M|+|F1N|=|m1|+|m2|=|m1-m2|=$\sqrt{£¨{m}_{1}+{m}_{2}£©^{2}-4{m}_{1}{m}_{2}}$=$\frac{16}{5}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡°a¡Ü0¡±ÊÇ¡°º¯Êý f £¨x£©=2x+aÓÐÁãµã¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬É趯Բ¹ýµãF2ÇÒÓëÖ±Ïßx=-1ÏàÇУ¬¼Ç¶¯Ô²µÄÔ²ÐĵĹ켣ΪE£®
£¨1£©Çó¹ì¼£EµÄ·½³Ì£»
£¨2£©Ôڹ켣EÉÏÓÐÁ½µãM¡¢N£¬ÍÖÔ²CÉÏÓÐÁ½µãP¡¢Q£¬Âú×ã$\overrightarrow{M{F}_{2}}$•$\overrightarrow{P{F}_{2}}$=0£¬ÇÒ$\overrightarrow{M{F}_{2}}$¡Î$\overrightarrow{N{F}_{2}}$£¬$\overrightarrow{P{F}_{2}}$¡Î$\overrightarrow{Q{F}_{2}}$£¬ÇóËıßÐÎPMQNÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª½Ç¦ÈµÄÖձ߹ýµãP£¨1£¬-2£©£¬Ôòsin¦È=-$\frac{2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¹ØÓÚxµÄ¶þ´Î·½³Ìax2+bx+c=0£¨a£¾0£¬b£¬c¡ÊR£©ÔÚÇø¼ä£¨0£¬2£©ÄÚÓÐÁ½¸öʵ¸ù£¬Èô$\left\{\begin{array}{l}{c¡Ý1}\\{25a+10b+4c¡Ý4}\end{array}\right.$£¬ÔòʵÊýaµÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®$\frac{3}{2}$C£®$\frac{9}{4}$D£®$\frac{16}{25}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÁâÐÎABCD£¬AB=2£¬¡ÏBAD=$\frac{¦Ð}{3}$£¬°ëÔ²OËùÔÚÆ½Ãæ´¹Ö±ÓÚÆ½ÃæABCD£¬µãPÔÚ°ëÔ²»¡ÉÏ£®£¨²»Í¬ÓÚB£¬C£©£®
£¨1£©ÈôPAÓëÆ½ÃæABCDËù³É½ÇµÄÕýÏÒֵΪ$\frac{{\sqrt{2}}}{4}$£¬Çó³öµãPµÄλÖã»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃPC¡ÍBD£¬Èô´æÔÚ£¬Çó³öµãPµÄλÖã¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»§ÍâÔ˶¯ÒѾ­³ÉΪһÖÖʱÉÐÔ˶¯£®Ä³¹«Ë¾ÎªÁËÁ˽âÔ±¹¤Ï²»¶»§ÍâÔ˶¯ÊÇ·ñÓëÐÔ±ðÓйأ¬¾ö¶¨´Ó¹«Ë¾È«Ìå650ÈËÖÐËæ»ú³éÈ¡50È˽øÐÐÎʾíµ÷²é£®
ϲ»¶»§ÍâÔ˶¯²»Ï²»¶»§ÍâÔ˶¯ºÏ¼Æ
ÄÐÔ±¹¤5
ŮԱ¹¤10
ºÏ¼Æ50
£¨¢ñ£©Í¨¹ý¶ÔÌôÑ¡µÄ50È˽øÐе÷²é£¬µÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£º
ÒÑÖª´ÓÕâ50ÈËÖнøÐÐËæ»úÌôÑ¡1ÈË£¬´ËÈËϲ»¶»§ÍâÔ˶¯µÄ¸ÅÂÊÊÇ0.6£®Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£¬²¢¹À¼Æ¸Ã¹«Ë¾ÄС¢Å®Ô±¹¤¸÷¶àÉÙÈË£»
£¨¢ò£©¹À¼ÆÓжà´óµÄ°ÑÎÕÈÏΪϲ»¶»§ÍâÔ˶¯ÓëÐÔ±ðÓйأ¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨¢ó£©ÈôÓÃËæ»úÊý±í·¨´Ó650ÈËÖгéȡԱ¹¤£®ÏȽ«650È˰´000£¬001£¬¡­£¬649±àºÅ£®Ç¡ºÃ000¡«199ºÅ¶¼ÎªÄÐÔ±¹¤£¬450¡«649ºÅ¶¼ÎªÅ®Ô±¹¤£®Ïֹ涨´ÓËæ»úÊý±í£¨¼û¸½±í£©µÚ2ÐеÚ7ÁеÄÊý¿ªÊ¼ÍùÓÒ¶Á£¬ÔÚ×îÏÈÌô³öµÄ5ÈËÖУ¬ÈÎÈ¡2ÈË£¬ÇóÖÁÉÙÈ¡µ½1λÄÐÔ±¹¤µÄ¸ÅÂÊ£®
¸½£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®
Ëæ»úÊý±í£º
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¡°¡ßËıßÐÎABCDÊÇÁâÐΣ¬¡àËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±¡±£¬ÔòÕâ¸öÍÆÀíµÄ´óǰÌáÊÇ
ÁâÐεĶԽÇÏß»¥Ïà´¹Ö±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ¶þÏîʽ£¨4x2-2x+1£©£¨2x+1£©5µÄÕ¹¿ªÊ½ÖУ¬º¬x4ÏîµÄϵÊýÊÇ80£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸