| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{8}$ | D. | $\frac{\sqrt{6}}{16}$ |
分析 根据直观图与原平面图形的面积比为常数,即可求出对应图形的面积.
解答 解:等边△ABC的边长为1,则该三角形的面积为
S△=$\frac{1}{2}$×1×1×sin60°=$\frac{\sqrt{3}}{4}$,
而原图和直观图面积之间的关系$\frac{{S}_{直观图}}{{S}_{原图}}$=$\frac{\sqrt{2}}{4}$,
故直观图△A′B′C′的面积为S直观图=$\frac{\sqrt{2}}{4}$×$\frac{\sqrt{3}}{4}$=$\frac{\sqrt{6}}{16}$
故选:D.
点评 本题考查了斜二测画法中原图和直观图面积之间的关系应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{40}{9}$ | B. | $-\frac{8}{21}$ | C. | 1 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x0 | ||
| C. | f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(x)=$\sqrt{{x}^{2}}$ | D. | f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com