精英家教网 > 高中数学 > 题目详情
5.若直线3x+4y=2,则x2+y2的最小值为$\frac{4}{25}$,最小值点为($\frac{6}{25}$,$\frac{8}{25}$).

分析 由柯西不等式(x2+y2)(32+42)≥(3x+4y)2=4,可得x2+y2≥$\frac{4}{25}$,由等号成立的条件和直线方程联立,求解即可得出结论.

解答 解:由柯西不等式(x2+y2)(32+42)≥(3x+4y)2=4,
即25(x2+y2)≥4,
∴x2+y2≥$\frac{4}{25}$.
当且仅当4x=3y时取等号.
由$\left\{\begin{array}{l}{4x=3y}\\{3x+4y=2}\end{array}\right.$,
得$\left\{\begin{array}{l}{x=\frac{6}{25}}\\{y=\frac{8}{25}}\end{array}\right.$
∴x2+y2的最小值为$\frac{4}{25}$,最小值点为($\frac{6}{25}$,$\frac{8}{25}$).

点评 本题考查柯西不等式,考查学生分析解决问题的能力,正确运用柯西不等式是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义运算a*b为执行如图所示的程序框图输出的S值,则(sin$\frac{π}{3}}$)*(cos$\frac{π}{3}}$)的值为(  )
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等差数列,a1=2,a1+a2+a3=12   
(1)求数列{an}的通项公式
(2)令bn=an+3n,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若等边△ABC的边长为1,则△ABC的平面直观图△A′B′C′的面积为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{8}$D.$\frac{\sqrt{6}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$若tan(α+β)=1,tanβ=-\sqrt{3},则tanα$=(  )
A.-2-$\sqrt{3}$B.2C.$\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+5}\\{y=3t-1}\end{array}\right.$(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,圆N的方程为ρ2-6ρsinθ=-8.
(1)求圆N的直角坐标方程;
(2)判断直线l与圆N的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.一条直线和x轴的正方向所成的角叫该直线的倾斜角
B.直线的倾斜角α的取值范围是:0°≤α≤180°
C.任何一条直线都有斜率
D.任何一条直线都有倾斜角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合A={x|log2x≥1},B={x|x2-2x-3<0},则A∩B=[2,3).

查看答案和解析>>

同步练习册答案