分析 由柯西不等式(x2+y2)(32+42)≥(3x+4y)2=4,可得x2+y2≥$\frac{4}{25}$,由等号成立的条件和直线方程联立,求解即可得出结论.
解答 解:由柯西不等式(x2+y2)(32+42)≥(3x+4y)2=4,
即25(x2+y2)≥4,
∴x2+y2≥$\frac{4}{25}$.
当且仅当4x=3y时取等号.
由$\left\{\begin{array}{l}{4x=3y}\\{3x+4y=2}\end{array}\right.$,
得$\left\{\begin{array}{l}{x=\frac{6}{25}}\\{y=\frac{8}{25}}\end{array}\right.$
∴x2+y2的最小值为$\frac{4}{25}$,最小值点为($\frac{6}{25}$,$\frac{8}{25}$).
点评 本题考查柯西不等式,考查学生分析解决问题的能力,正确运用柯西不等式是关键,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2-\sqrt{3}}}{4}$ | B. | $\frac{{2+\sqrt{3}}}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{8}$ | D. | $\frac{\sqrt{6}}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2-$\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $2+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一条直线和x轴的正方向所成的角叫该直线的倾斜角 | |
| B. | 直线的倾斜角α的取值范围是:0°≤α≤180° | |
| C. | 任何一条直线都有斜率 | |
| D. | 任何一条直线都有倾斜角 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com