精英家教网 > 高中数学 > 题目详情
15.设全集U=R,集合A={x|log2x≥1},B={x|x2-2x-3<0},则A∩B=[2,3).

分析 求出集合A,B,根据集合的交集定义进行计算.

解答 解:∵log2x≥1=log22,
∴x≥2,
∴A=[2,+∞),
∵x2-2x-3<0,
∴(x-3)(x+2)<0,
解得-2<x<3,
∴B=(-2,3),
∴A∩B=[2,3),
故答案为:[2,3)

点评 本题主要考查集合的基本运算,求出A,B的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若直线3x+4y=2,则x2+y2的最小值为$\frac{4}{25}$,最小值点为($\frac{6}{25}$,$\frac{8}{25}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的导数
(1)y=2x3-3x2-4;
(2)y=xlnx;
(3)$y=\frac{cosx}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}和{bn}的项数均为m,则将数列{an}和{bn}的距离定义为$\sum_{i=1}^{n}$|ai-bi|.
(1)给出数列1,3,5,6和数列2,3,10,7的距离;
(2)设A为满足递推关系an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$的所有数列{an}的集合,{bn}和{cn}为A中的两个元素,且项数均为m,若b1=2,c1=3,{bn}和{cn}的距离小于2016,求m的最大值;
(3)记S是所有7项数列{an|1≤n≤7,an=0或1}的集合,T⊆S,且T中任何两个元素的距离大于或等于3,证明:T中的元素个数小于或等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知角θ的终边过点P(1,-2),则sinθ=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C对边分别是a,b,c,且满足$(2c-b)cosA=asin(\frac{π}{2}-B)$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,且△ABC的面积为$\sqrt{3}$;求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知菱形ABCD,AB=2,∠BAD=$\frac{π}{3}$,半圆O所在平面垂直于平面ABCD,点P在半圆弧上.(不同于B,C).
(1)若PA与平面ABCD所成角的正弦值为$\frac{{\sqrt{2}}}{4}$,求出点P的位置;
(2)是否存在点P,使得PC⊥BD,若存在,求出点P的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c分别是△ABC的角A,B,C的对边,且b=2,a=1,sin$\frac{C}{2}=\frac{{\sqrt{2}}}{4}$.
(1)求c;
(2)求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}为等差数列,若an=a,an=b(n-m≥1,m,n∈N*),则am+n=$\frac{nb-ma}{n-m}$.
(1)类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),猜想数列{bm+n}的通项公式;
(2)证明(1)中的结论.

查看答案和解析>>

同步练习册答案