精英家教网 > 高中数学 > 题目详情
16.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为(  )
A.1B.2C.4D.8

分析 由斜二测画法还原出原图,求面积.

解答 解:由斜二测画法可知原图应为:
其面积为:S=$\frac{1}{2}×2×4$=4,
故选:C.

点评 本题考查直观图与平面图形的画法,注意两点:一是角度的变化;二是长度的变化;考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若点P(x0,2)为抛物线E:y2=4x上一点,则点P到抛物线E的焦点的距离为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x∈[-1,0]}\\{{x}^{2}+1,x∈(0,1]}\end{array}\right.$,则函数f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等差数列{an}满足:${a_{n+1}}+{a_{n-1}}=a_n^2\;(n≥2)$,等比数列{bn}满足:${b_{n+1}}{b_{n-1}}=2b_n^{\;}\;(n≥2)$,则log2(a2+b2)=(  )
A.-1或2B.0或2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各组函数表示相同函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(x)=$\sqrt{{x}^{2}}$D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个正三棱锥(底面为正三角形,顶点在底面上的射影为底面的中心)的四个顶点都在半径为1的球面上,其中底面的三个顶点在过该球球心的一个截面上,则该正三棱锥的体积是(  )
A.$\frac{{\sqrt{3}}}{12}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的定义域是x≠0的一切实数,对于定义域内的任意x1,x2,都有f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0,且f(2)=1.
(1)求f(4);
(2)证明:f(x)在(0,+∞)上是增函数;
(3)解不等式 f(2x2-1)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线3x+4y=2,则x2+y2的最小值为$\frac{4}{25}$,最小值点为($\frac{6}{25}$,$\frac{8}{25}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的导数
(1)y=2x3-3x2-4;
(2)y=xlnx;
(3)$y=\frac{cosx}{x}$.

查看答案和解析>>

同步练习册答案