精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|(x-2)(x+6)<0},B={x|y=$\sqrt{1-x}$},则A∩B=(  )
A.(-6,1)B.(-6,1]C.(1,2)D.[1,2)

分析 先分别求出集合A和B,由此利用交集定义能出A∩B.

解答 解:∵集合A={x|(x-2)(x+6)<0}={x|-6<x<2},
B={x|y=$\sqrt{1-x}$}={x|x≤1},
∴A∩B={x|-6<x≤1}=(-6,1].
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|\overrightarrow b|=2$,$(\overrightarrow a+\overrightarrow b)•(3\overrightarrow a-\overrightarrow b)=4$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{4}$sinxcosx是(  )
A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数D.最小正周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=e-x(x2-ax+a),a≥0..
(I )讨论f(x)的单调性;
(II) ( i )若a=0,证明:当x>6 时,f(x)<$\frac{1}{x}$
(ii)若方程f(x)=a有3个不同的实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)的反函数为f-1(x),且对任意的x都有f(x)+f(6-x)=2,若ab=100,则f-1(lga)+f-1(lgb)=(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把复数z的共轭复数记作$\overline{z}$,若(1+i)z=1-i,i为虚数单位,则$\overline{z}$=(  )
A.iB.-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,△PAD为正三角形,四边形ABCD为直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,点E、F分别为AD、CP的中点,AD=AB=2CD=2.
(Ⅰ)证明:直线EF∥平面PAB;
(Ⅱ)求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x、y满足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,则z=x-y的取值范围是(  )
A.[0,3]B.[-$\frac{17}{5}$,3]C.[-$\frac{17}{5}$,1]D.[-$\frac{17}{5}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某城市理论预测2020年到2024年人口总数与年份的关系如下表所示
年份202x(年)01234
人口数 y(十万)5781119
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅱ)据此估计2025年该城市人口总数.
参考数值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
参考公式:用最小二乘法求线性回归方程系数公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步练习册答案