精英家教网 > 高中数学 > 题目详情

已知,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.

(1)的单调递减区间为(0,1),单调递增区间为(1,e),的极小值为;(2)证明见解析;(3)存在实数,使得上的最小值为-1.理由见解析.

解析试题分析:(1)将代入后对函数求导,可得,令,可解得函数的单调区间,从而判断出极值; (2) 构造函数,由,故不等式成立;(3)假设存在实数a,使)有最小值-1,,对进行讨论,注意,当时,无最小值;当时,,得;当时,,得(舍去),存在实数,使得上的最小值为-1.
解:(1)当a=1时,         (1分)
,得x=1.
时,,此时单调递减;                       (2分)
时,,此时单调递增.          (3分)
所以的单调递减区间为(0,1),单调递增区间为(1,e),的极小值为        (4分)
(2)由(1)知上的最小值为1.(5分)
,所以.(6分)
时,上单调递增,                   (7分)
所以.
故在(1)的条件下,.(8分)
(3)假设存在实数a,使)有最小值-1.
因为,                                      (9分)
①当时,上单调递增,此时无最小值; (10分)
②当时,当时,,故在(0,a)单调递减;当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中a,b∈R
(1)求函数f(x)的最小值;
(2)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围;
(3)当时,若对x∈[0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的一个极值点.
(1)求的关系式(用表示),并求的单调区间;
(2)设在区间[0,4]上是增函数.若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的极值(用含的式子表示);
(2)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的最大值与最小值;
(2)若时,函数的图像恒在直线上方,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=ax3+3x2+3x(a≠0).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值,并求的单调区间;
(2)设,其中的导函数.证明:对任意

查看答案和解析>>

同步练习册答案