精英家教网 > 高中数学 > 题目详情

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

(1)若的单调增区间为 , ,的单调增区间为;(2).

解析试题分析:(1)对f(x)求导得,解可得单调增区间,解不等式过程中要对进行讨论;(2) 在R上单调递增,则在R上恒成立  ,即恒成立,即,求出的最小值即可.
试题解析:
解:(1)                                            1分
,则,此时的单调增区间为        2分
,令,得
此时的单调增区间为                                -6分
(2)在R上单调递增,则在R上恒成立              -8分
恒成立
,因为当时,
所以                                                      -12分






  -
0
  +
 
考点:求导,函数的单调性与导数的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数在区间上的最小值;
(2)对一切实数恒成立,求实数的取值范围;
(3) 证明对一切恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线方程为.
(1)求函数的解析式;
(2)若关于的方程恰有两个不同的实根,求实数的值;
(3)数列满足,求的整数部分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸才能
使四周空白面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+2x+kln x,其中k≠0.
(1)当k>0时,判断f(x)在(0,+∞)上的单调性;
(2)讨论f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是二次函数,方程有两个相等的实数根,且
(1)求的表达式;
(2)若直线的图象与两坐标轴围成的图形面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若处有极值,求a;
(2)若上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:
(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

同步练习册答案