精英家教网 > 高中数学 > 题目详情

已知函数,其中a,b∈R
(1)求函数f(x)的最小值;
(2)当a>0,且a为常数时,若函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围;
(3)当时,若对x∈[0,+∞)恒成立,求a的最小值.

(1);(2)时,时,;(3)1

解析试题分析:(1)利用导数判断出函数的单调性,即可求出的最小值;(2)解决本题的关键是由“对任意的x1>x2≥4,总有成立”得出“上单调递增”,从而再次转化为导函数大于0的问题求解;(3)通过构造函数,转化为恒成立,于是转化为求上的最大值问题求解.解题过程中要注意对参数的合理分类讨论.
试题解析:(1)∵,令,得
在(0,)上单调递减,在(,+∞)上单调递增
处取得最小值
;        4分
(2)由题意,得上单调递增
上恒成立
上恒成立        5分
构造函数

∴F(x)在上单调递减,在上单调递增
(i)当,即时,F(x)在上单调递减,在上单调递增

,从而        7分
(ii)当,即时,F(x)在(4,+∞)上单调递增
,从而        8分
综上,当时,时,;     9分
(3)当时,构造函数

由题意,有恒成立

(i)当时,
上单调递增
上成立,与题意矛盾.        11分
(ii)当时,令
,由于
①当时,上单调递减
,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试判断函数的单调性;
(2)设,求上的最大值;
(3)试证明:对,不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.
(1)求的值及函数的极值;(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数在区间上的最小值;
(2)对一切实数恒成立,求实数的取值范围;
(3) 证明对一切恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

R,函数
(1)若x=2是函数y=f(x)的极值点,求实数a的值;
(2)若函数在区间[0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数上的最大值与最小值的差为          .

查看答案和解析>>

同步练习册答案