精英家教网 > 高中数学 > 题目详情

已知函数
(1)求的极值(用含的式子表示);
(2)若的图象与轴有3个不同交点,求的取值范围.

(1)的极大值,极小值为;(2)

解析试题分析:(1)由函数极值的定义及求法,1、求定义域,2、求导数,然后令导数等于0,解出导函数根,再由,得出的取值范围,则在此区间内单调递增,又由,得出的取值范围,则在此区间内单调递减(也可由的取值范围来判断),先减后增,则在拐点处取得极小值,先增后减,则在拐点处取得极大值。(2)有3个不同交点,而函数有一个极大值,一个极小值,只有当极小值小于0,极大值大于0才能满足题意,所以题目得解。
试题解析:(1)令
得:或-3  2分
时,
时,
在区间单调递增;在区间单调递减  4分
于是的极大值,极小值为  6分
(2)若的图象与轴有3个不同交点,则  8分
  10分
  12分
考点:1、函数极值的定义;2、函数导数的求法及函数概念综合

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.
(1)求的值及函数的极值;(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数处取得极值,对恒成立,求实数的取值范围;
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸才能
使四周空白面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的一个极值点,其中.
(1)的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点处的切线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

同步练习册答案