已知函数.
(1)求的极值(用含的式子表示);
(2)若的图象与轴有3个不同交点,求的取值范围.
(1)的极大值,极小值为;(2)
解析试题分析:(1)由函数极值的定义及求法,1、求定义域,2、求导数,然后令导数等于0,解出导函数根,再由,得出的取值范围,则在此区间内单调递增,又由,得出的取值范围,则在此区间内单调递减(也可由的取值范围来判断或),先减后增,则在拐点处取得极小值,先增后减,则在拐点处取得极大值。(2)有3个不同交点,而函数有一个极大值,一个极小值,只有当极小值小于0,极大值大于0才能满足题意,所以题目得解。
试题解析:(1)令,
得:或-3 2分
当或时,;
当时,;
故在区间,单调递增;在区间单调递减 4分
于是的极大值,极小值为 6分
(2)若的图象与轴有3个不同交点,则 8分
即 10分
得 12分
考点:1、函数极值的定义;2、函数导数的求法及函数概念综合
科目:高中数学 来源: 题型:解答题
已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.
(1)求的值及函数的极值;(2)证明:当时,;
(3)证明:对任意给定的正数,总存在,使得当,恒有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2 ,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸才能
使四周空白面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知, ,,其中e是无理数且e="2.71828" ,.
(1)若,求的单调区间与极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数a,使的最小值是?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com