精英家教网 > 高中数学 > 题目详情

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

(1) 1,(2)详见解析.

解析试题分析: (1)利用导数求函数单调性,注意考虑函数定义域. 两个函数的单调性可以从可以确定的函数入手.因为时,;当时,恒成立,所以,恒成立,所以,上为增函数。根据在定义域上单调性相反得,上为减函数,所以恒成立,即:,所以因为,当且仅当时,取最大值.所以,此时的最小值是,-(2)运用函数与方程思想,方程有三个不同的解,实质就是函数有三个不同的交点 ,由图像可知在极大值与极小值之间. 证明不等式,需从结构出发,利用条件消去a,b,将其转化为一元函数:,从而根据函数单调性,证明不等式.
解析:(1)因为---------2分。
时,;当时,恒成立,
所以,恒成立,所以,上为增函数。
根据在定义域上单调性相反得,上为减函数,所以恒成立,即:,所以因为,当且仅当时,取最大值.所以,此时的最小值是,-------6分
(2)因为时,,且一元二次方程,所以有两个不相等的实根  8分
时,为增函数;
时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的单调递增区间;
(2)若在区间内有极大值和极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的极值(用含的式子表示);
(2)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的最大值与最小值;
(2)若时,函数的图像恒在直线上方,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若时,函数有三个互不相同的零点,求的取值范围;
(2)若函数内没有极值点,求的取值范围;
(3)若对任意的,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=ax3+3x2+3x(a≠0).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中的导函数.

(1)求的表达式;
(2)若恒成立,求实数的取值范围;
(3)设,比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

同步练习册答案