精英家教网 > 高中数学 > 题目详情

设函数
(1)若时,函数有三个互不相同的零点,求的取值范围;
(2)若函数内没有极值点,求的取值范围;
(3)若对任意的,不等式上恒成立,求实数的取值范围.

(1);(2);(3).

解析试题分析:(1)时,有三个互不相同的零点,即有三个互不相同的实数根,构造函数确定函数的单调性,求函数的极值,从而确定的取值范围;
(2)要使函数内没有极值点,只需上没有实根即可,即的两根不在区间上;
(3)求导函数来确定极值点,利用的取值范围,求出上的最大值,再求满足的取值范围.
(1)当时,.
因为有三个互不相同的零点,所以,即有三个互不相同的实数根.
,则.
,解得;令,解得.
所以上为减函数,在上为增函数.
所以.
所以的取值范围是.
(2)因为,所以.
因为内没有极值点,所以方程在区间上没有实数根,
,二次函数对称轴
时,即,解得
所以,或不合题意,舍去),解得.
所以的取值范围是
(3)因为,所以,且时,.
又因为,所以上小于0,是减函数;
上大于0,是增函数;
所以,而
所以
又因为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若x=3是的极值点,求[1,a]上的最小值和最大值;
(2)若时是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的一个极值点,其中.
(1)的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点处的切线的斜率恒大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,( a为常数,e为自然对数的底).
(1)
(2)时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1当 时, 与)在定义域上单调性相反,求的 的最小值。
(2)当时,求证:存在,使的三个不同的实数解,且对任意都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数,曲线在点处的切线方程为
(I)求
(II)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数。
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
上的最大值和最小值分别记为,求
恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数y=f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案