精英家教网 > 高中数学 > 题目详情
7.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x-b)+f(-2x+1)=0有实数根,求实数b的取值范围.

分析 (1)根据奇函数的定义即可求出,
(2)根据奇函数的定义将不等式化为:f(t2-2t)<f(-2t2+k),再分离函数解析式,利用指数函数的复合函数的单调性判断出此函数的单调性,再列出关于x的不等式,由题意转化为:3t2-2t-k>0恒成立,利用二次函数的性质列出等价不等式求解.
(3)先将原方程变为b=4x-2x+1,再利用整体思想将2x看成整体,结合二次函数的性质即可求得实数b的取值范围

解答 解:(1)∵函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函数,
∴f(-x)=$\frac{-{2}^{-x}+a}{{2}^{-x}+1}$=$\frac{-1+a•{2}^{x}}{1+{2}^{x}}$=-f(x)=-$\frac{-{2}^{x}+a}{{2}^{x}+1}$,
∴a=1,
(2)由(1)可知f(x)=$\frac{-{2}^{x}+1}{{2}^{x}+1}$=-1+$\frac{2}{{2}^{x}+1}$
由上式易知f(x)在(-∞,+∞)上为减函数,
又∵f(x)是奇函数,
从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k),
∵f(x)是减函数,由上式推得t2-2t>-2t2+k,
即对一切t∈R有3t2-2t-k>0,
从而判别式△=4+12k<0,解得k<-$\frac{1}{3}$,
(3)∵f(x)是奇函数,
∴f(4x-b)+f(-2x+1)=0,
∴f(4x-b)=f(2x+1),
∴4x-b=2x+1
∴b=4x-2x+1
∵4x-2x+1=(2x2-2×2x=(2x-1)2-1≥-1,
∴当b∈[-1,+∞)时方程有实数解

点评 本题主要考查了奇函数的定义的灵活应用,以及分离常数法,复合函数和指数函数单调性的应用,二次函数的性质的应用,较综合,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=3,an+1=can+m(c,m为常数)
(1)当c=1,m=1时,求数列{an}的通项公式an
(2)当c=2,m=-1时,证明:数列{an-1}为等比数列;
(3)在(2)的条件下,记bn=$\frac{1}{{a}_{n}-1}$,Sn=b1+b2+…+bn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设集合A={0,2,4,6,8,10},B={4,8},则∁AB={0,2,6,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图:曲线C1与C2分别是y=xm,y=xn在第一象限的图象,则(  )
 
A.n<m<0B.m<n<0C.n>m>0D.m>n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}是等差数列,若a4+2a6+a8=12,则该数列前11项的和为(  )
A.10B.12C.24D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=1-$\frac{a}{{3}^{x}+1}$是奇函数.
(1)求a的值;
(2)证明f(x)是R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log4(2x+3-x2).
(1)求函数f(x)的单调区间,
(2)当x∈(0,$\frac{3}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{3}$x3-2x2+3x+a的极大值为2.
(1)求实数a的值;
(2)求f(x)在[b,b+1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的两个焦点坐标分别是F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),并且经过点P($\sqrt{3}$,-$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且满足$\frac{1}{2}$≤λ≤$\frac{2}{3}$时,求△AOB面积S的取值范围.

查看答案和解析>>

同步练习册答案