精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xex﹣lnx(ln2≈﹣0.693, ≈1.648,均为不足近似值)
(1)当x≥1时,判断函数f(x)的单调性;
(2)证明:当x>0时,不等式f(x)> 恒成立.

【答案】
(1)解:对f(x)=xex﹣lnx求导得f′(x)=(x+1)ex

∵x≥1时,(x+1)ex≥2e, ≤1,

∴f′(x)≥2e﹣1>0,

∴f(x)在[1,+∞)递增


(2)证明:∵f′( )=1.25 ﹣4<1.25×2﹣4<0,

f′( )= ﹣2> ×1.648﹣2=0.472>0,

又f′(x)在(0,+∞)递增,

∴f′(x)在(0,+∞)内有唯一1个零点x0

且(x0+1) = ,x0∈( ),

∴x=x0是f(x)在(0,+∞)上唯一的极小值点,也是最小值值点,

∴f(x)≥f(x0)=x0 ﹣lnx0= ﹣lnx0 <x0

∴f(x)在[ ]递减,

∴f(x0)≥f( )= +ln2> +0.639>1.359>

∴f(x)>


【解析】(1)求出函数的导数,判断导函数的符合,求出函数的单调区间即可;(2)求出函数的导数,根据函数的单调性证明即可.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mex﹣lnx﹣1.
(1)当m=1,x∈[1,+∞)时,求y=f(x)的值域;
(2)当m≥1时,证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=4,an+1= ,n∈N* , Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1
(Ⅱ)求证:n∈N*时,2≤Sn﹣2n<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1= ,Sn=n2an﹣n(n﹣1),n=1,2,…
(1)证明:数列{ Sn}是等差数列,并求Sn
(2)设bn= ,求证:b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,且满足an+1﹣an≤n2n , an﹣an+2≤﹣(3n+2)2n , 则a2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是线段BC上一动点,若直线AM与平面PBC所成角的正切的最大值是 ,则三棱锥P﹣ABC的外接球的表面积是(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数p(x)=lnx+x﹣4,q(x)=axex(a∈R).
(Ⅰ)若a=e,设f(x)=p(x)﹣q(x),试证明f′(x)存在唯一零点x0∈(0, ),并求f(x)的最大值;
(Ⅱ)若关于x的不等式|p(x)|>q(x)的解集中有且只有两个整数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是(
A.P=lg(1+
B.P=
C.P=
D.P= ×

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】| |=1,| |= =0,点C在∠AOB内,且∠AOC=30°,设 =m +n (m、n∈R),则 等于(
A.
B.3
C.
D.

查看答案和解析>>

同步练习册答案