精英家教网 > 高中数学 > 题目详情

【题目】利用计算机产生120个随机正整数,其最高位数字(如:34的最高位数字为3,567的最高位数字为5)的频数分布图如图所示,若从这120个正整数中任意取出一个,设其最高位数字为d(d=1,2,…,9)的概率为P,下列选项中,最能反映P与d的关系的是(
A.P=lg(1+
B.P=
C.P=
D.P= ×

【答案】A
【解析】解:当d=5时,其概率为P= =

对于B,P=

对于C,P=0,

对于D,P=

故B,C,D均不符合,

故选:A.

【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax(a∈R).
(1)若曲线y=f(x)存在一条切线与直线y=x平行,求a的取值范围;
(2)当0<a<2时,若f(x)在[a,2]上的最大值为﹣ ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex﹣lnx(ln2≈﹣0.693, ≈1.648,均为不足近似值)
(1)当x≥1时,判断函数f(x)的单调性;
(2)证明:当x>0时,不等式f(x)> 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣ 2+(y﹣1)2=1和两点A(﹣t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则当t取得最大值时,点P的坐标是(
A.(
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)经过点(1, ),离心率为 ,点A为椭圆C的右顶点,直线l与椭圆相交于不同于点A的两个点P(x1 , y1),Q(x2 , y2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)当 =0时,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex+ (其中a∈R)有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 |﹣ |,其中﹣3≤a≤1.
(Ⅰ)当a=1时,解不等式f(x)≥1;
(Ⅱ)对于任意α∈[﹣3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA⊥平面AC,四边形ABCD是矩形,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)若二面角P﹣CD﹣B为45°,AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知C1 (θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的 和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ( cosθ+sinθ)=4
(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.

查看答案和解析>>

同步练习册答案