精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=log2(2x+1),x>0.
(1)求使得f(x)的反函数f-1(x);
(2)解方程:2f(x)-f-1(x)=3.

分析 (1)求反函数的方法是反解
(2)代入解方程

解答 解:(1)y=log2(2x+1)∴2y=2x+1所以f-1(x)=$lo{g}_{2}({2}^{x}-1)$(x>1)
(2)由题知$2lo{g}_{2}({2}^{x}+1)-lo{g}_{2}({2}^{x}-1)$=3
∴$lo{g}_{2}\frac{({2}^{x}+1)^{2}}{{2}^{x}-1}=3∴\frac{({2}^{x}+1)^{2}}{{2}^{x}-1}=8$化简得(2x-3)2=0∴x=log23

点评 本题考查了求反函数及解方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在区间[1,2]上随机取一个数r,则使得圆x2+y2=r2与直线x+y+2=0存在公共点的概率为2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,A={x|-x2+1<0},B={x|lnx<0},则(∁UA)∩B=(  )
A.B.A={x|x≤1}C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.我国大力提倡足球运动,从2013年开始高校的体考生招生也向招收足球项目的考生倾斜,某高校(四年制)为了解近四年学校招收体考生中足球项目考生的情况,做了如下统计,现以2012年为统计起始年,记为x=0,以足球项目考生占所有体考生的比例为y.
2012级2013级2014级2015级
x0123
体考生250260300300
足球项目考生35394548
y0.140.15
(1)已知y关于变量x的变化关系满足线性回归方程$\widehaty$=$\widehatb$x+$\widehata$,其中$\widehata$=0.141,求出回归方程;2016级计划足球项目考生60人,根据线性回归方程2016级总的体考生将招收多少人(人数四舍五入);
(2)开学后举行了一次新生足球见面赛,由15级16级的足球项目考生共同组成一支18人足球队,按分层抽样确定15级,16级的足球队员人数.
(i)求足球队中,15级和16级的足球队员各有多少人?
(ii)比赛上场队员有11人,其余7人在场外替补,已知在场上有6名16级学生,在比赛过程中有2名替补队员被替换上场,求替换上场的选手中恰好有1名16级的新生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知α为锐角,sinα=$\frac{1}{2}$,求sin(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的二次方程mx2-2(m+1)x+m=0有两个不等的实数根,则实数m的取值范围是(-$\frac{1}{2}$,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an(n∈N*),求使b1+b2+…+bn>45成立的最小整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.近年来我国电子商务行业迎来篷布发张的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币,与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)完成商品和服务评价的2×2列联表,并说明是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅱ)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X.
①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
参考数据及公式如下:
 P(K2≥k) 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k 2.0722.706 3.841 5.024 6.635 7.879 10.828 
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x)=g(x0,则称f(x)与g(x)在区间M上是“相似函数”,若f(x)=2x2+ax+b与g(x)=x+$\frac{4}{x}$在[1,$\frac{5}{2}$]上是“相似函数”,则函数f(x)在区间[1,$\frac{5}{2}$]上的最大值为(  )
A.4B.$\frac{9}{2}$C.6D.$\frac{89}{2}$

查看答案和解析>>

同步练习册答案