分析 (I)由数列{an}满足:an+1=2an,数列{an}的公比q=2,a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3.解得a1.利用等比数列的通项公式即可得出an.
(Ⅱ)由(I)可知bn=log2an=n,数列{bn}为等差数列,根据等差数列前n项和公式,将b1+b2+…+bn>45转化成$\frac{n(n+1)}{2}$>45,解得n的取值范围,求得不等式成立的最小正整数n.
解答 解:(Ⅰ)因为an+1=2an,
所以数列{an}为公比为2的等比数列,
由已知:a1,a2+1,a3成等差数列,即2(a2+1)=a1+a3,
2(2a1+1)=a1+4a1,
所以a1=2,
∴数列{an}的通项公式an=2n;
(Ⅱ)bn=log2an=n,
所以bn-bn-1=1,
数列{bn}为等差数列,
b1+b2+…+bn=$\frac{n(n+1)}{2}$,
∴$\frac{n(n+1)}{2}$>45,即:n2+n-90>0
解得:n>9,
求使b1+b2+…+bn>45成立的最小整数n=10.
点评 本题考查了递推关系、等差数列与等比数列的通项公式及等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com