精英家教网 > 高中数学 > 题目详情
14.已知正实数x,y满足x+2y=1,则$\frac{y}{2x}$+$\frac{1}{y}$的最小值为2+$\sqrt{2}$.

分析 由1=x+2y,可得$\frac{y}{2x}$+$\frac{1}{y}$=$\frac{y}{2x}$+$\frac{x+2y}{y}$=2+$\frac{x}{y}$+$\frac{y}{2x}$,运用基本不等式即可得到所求最小值.

解答 解:由正实数x,y满足x+2y=1,
则$\frac{y}{2x}$+$\frac{1}{y}$=$\frac{y}{2x}$+$\frac{x+2y}{y}$
=2+$\frac{x}{y}$+$\frac{y}{2x}$≥2+2$\sqrt{\frac{x}{y}•\frac{y}{2x}}$=2+$\sqrt{2}$,
当且仅当y=$\sqrt{2}$x=$\frac{4-\sqrt{2}}{7}$时,取得最小值2+$\sqrt{2}$.
故答案为:2+$\sqrt{2}$.

点评 本题考查最值的求法,注意运用“1”的代换法和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:an+1=2an,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an(n∈N*),求使b1+b2+…+bn>45成立的最小整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an-3.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式是bn=$\frac{1}{{(2{{log}_3}{a_n}+1)•(2{{log}_3}{a_n}+3)}}$,bn前n项和为Tn,求证:对于任意的正整数n,总有Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x)=g(x0,则称f(x)与g(x)在区间M上是“相似函数”,若f(x)=2x2+ax+b与g(x)=x+$\frac{4}{x}$在[1,$\frac{5}{2}$]上是“相似函数”,则函数f(x)在区间[1,$\frac{5}{2}$]上的最大值为(  )
A.4B.$\frac{9}{2}$C.6D.$\frac{89}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如表频率分布表:
分组频数频率
[-3,-2)50.10
[-2,-1)80.16
(1,2]a0.50
(2,3]10b
(3,4]c0.04
合计501.00
(1)写出如表表格中缺少的数据a,b,c的值:a=25,b=0.2,c=2.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的频率;
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.四棱锥P-ABCD底面是菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)求证:平面AEF⊥平面PAD;
(Ⅱ)若$\frac{PA}{AB}$=$\sqrt{3}$,设H为PD的四等分点(靠近点D),求EH与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设等比数列{an},a1=1,a4=8,则S10=1023.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8$\sqrt{2}$cos(θ-$\frac{3π}{4}$),曲线C2的参数方程为$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$,(θ为参数).
(1)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;
(2)若P是曲线C2上的动点,求P到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t为参数)的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高三文科500名学生参加了3月份的高考模拟考试,学校为了了解高三文科学生的历史、地理学习情况,从500名学生中抽取100名学生的成绩进行统计分析,抽出的100名学生的地理、历史成绩如表:
地理
历史
[80,100][60,80][40,60]
[80,100]8m9
[60,80]9n9
[40,60]8157
若历史成绩在[80,100]区间的占30%,
(1)求m,n的值;
(2)请根据上面抽出的100名学生地理、历史成绩,填写下面地理、历史成绩的频数分布表:
[80,100][60,80][40,60]
地理
历史
根据频数分布表中的数据估计历史和地理的平均成绩及方差(同一组数据用该组区间的中点值作代表),并估计哪个学科成绩更稳定.

查看答案和解析>>

同步练习册答案